2022 리얼 오리지널

ALL NEW The no

The newest edition

2022 수능 대비

463만권 BEST

SELLER (2006~2020 누적 판매 1위)

2021 special edition

[교재 구성] 문제편+해설편+정답률+빠른 정답+OMR 카드

공통+선택(확률과 통계•미적분•기하)

수학영역

2017~2021학년도 5개년 [수능·모평·학평·예시 문항] 기출문제 총 25회 2022 수능 체제를 반영해 공통+선택(확률과 통계·미적분·기하) 과목으로 재구성 신수능과 100% 똑같이 공통 [8쪽 22문항], 선택 [각 4쪽 8문항]으로 구성 [new explanation] 해설편에 [문제와 보기를 수록]하여 학습 효과 UP

2022 수능 체제 [수학영역]

2022 수능 체제의 가장 큰 변화는 공통과목과 선택과목이 생긴 부분입니다. 공통과목은 [수학 I , 수학 I]로 모두 응시하는 과목이고, [확률과 통계, 미적분, 기하]는 선택과목이 되었습니다.

1 수학영역은 2022 수능부터 [공통과목 + 선택과목]으로 시행

공통과목 [수학 $I \cdot$ 수학 I]를 응시 후 선택과목 [확률과 통계, 미적분, 기하] 중 1과목을 선택 후 응시

이전 (2021) 수능	202	2학년도 수능 (시험지	구성)
	공통과목 [수	학 I • 수학 I]	1쪽~8쪽
● 가형 : 수학 , 미적분, 확률과 통계 ● 나형 : 수학 , 수학 , 확률과 통계	선택과목	확률과 통계	9쪽~12쪽
♥다양 · 구역 r , 구역 r , 목폴파 중계 (1쪽~12쪽)	선택과목	미적분	13쪽~16쪽
	선택과목	기하	17쪽~20쪽

^{**} 수학영역의 시험지는 공통 8쪽+선택 [4쪽+4쪽+4쪽] 총 20쪽으로 되어 있습니다.

2 수학영역 [30문항 중 공통과목 22문항, 선택과목 8문항] 출제

수학 점수는 [공통과목 점수를 활용]해 [선택과목 점수 조정]의 절치를 거친 후 표준 점수와 등급 산출

구분	2021(이전) 수능	2022학년도 수능
공통	객관식 5지 선다형, 단답형	객관식 5지 선다형, 단답형
문항 수	30문항(100점)	공통 : 22문항(74점)
표정 표	30군왕(100급)	선택 : 8문항(26점)
문항 배점	2점(3), 3점(14), 4점(13)	2점(3), 3점(14), 4점(13)
시간	100분	100분
성적 산출	상대 평가	상대 평가

3 2022 수능 [수학영역]의 특징 BEST 3

- ① 이전 수능 출제 범위에 해당하지 않는 [기하] 과목이 선택과목이 되었고, 공통 출제 범위에 있던 [확률과 통계] 과목도 선택과목이 되었습니다.
- ② 수학 I 과목이 이전 문과 학생들이 주로 응시했던 수학 [나형]에서 모두가 응시해야 하는 [공통과목]으로 변경되었습니다.
- ③ 이전 수능에서 배점의 경우 **30문항 총 100점 이었지만, 공통과목 22문항 74점, 선택과목 8문항 26점으로** 구분 변경되었습니다.

4 수학영역 [2022 수능 체제 반영] 재구성

- ① 수학영역은 2022학년도 수능 체제를 반영하여 [공통 과목]+[선택 과목]으로 재구성을 했습니다. 공통 과목은 [수학 I, 수학 I], 선택 과목은 [확률과 통계, 미적분, 기하]입니다.
- ② 2022학년도 수능 체제에 맞추어 배점, 및 단답형 문항 수까지 출제유형을 반영하였으며 시험지 구성도 공통 과목 8쪽, 선택 과목 모두 각 4쪽 [총 20쪽]으로 맞추었습니다.

참고 사항

2022학년도 대입부터 일부 대학은 자연 계열에서 [미적분, 기하 중 택 1]을 지정하고 있습니다.

[미적분, 기하 중 택 1] 지정 대학

경희대, 계명대(의예/약학/제약학), 고려대(서울), 공주대(수학교육), 동국대, 부산대, 서강대, 서울대, 서울과기대, 서울시립대, 성균관대, 세종대, 연세대(서울), 이화여대, 중앙대, 한양대(서울)

수학영역 2022 수능부터 이렇게 달라져요!

리얼 오리지널
[수학영역] 교재는
2022 수능 체제를
100% 반영했습니다.

Page 2022 수능 시험 대비 REAL ORIGINAL 수능기출 25회 모의고사

수학영역

Contents	차례	
01회 2020학년도	3 월 전국연합 학력평가	001절
02 회 2019 학년도	3 월 전국연합 학력평가	021절
03회 2018학년도	3 월 전국연합 학력평가	041፭
04 회 2020 학년도	4 월 전국연합 학력평가	061즐
05 회 2019 학년도	4 월 전국연합 학력평가	081즉
06 회 2021 학년도	6 월 모의평가	101즉
07 회 2020 학년도	6 월 모의평가	121፭
08회 2019학년도	6 월 모의평가	141፭
09 회 2018 학년도	6 월 모의평가	161፭
10회 2017학년도	6 월 모의평가	181፭
11회 2020학년도	7 월 전국연합 학력평가	201፭
1 2 회 2019학년도	7 월 전국연합 학력평가	221질
13회 2021학년도	9 월 모의평가	241질
14회 2020학년도	9 월 모의평가	261፭
15회 2019학년도	9 월 모의평가	281즉
16회 2018학년도	9 월 모의평가	301즐
17 회 2017 학년도	9 월 모의평가	321፭
18회 2020학년도 1	0월 전국연합 학력평가	341፭
19회 2019학년도 1	0월 전국연합 학력평가	361즉
20회 2021학년도 (대학수학능력시험	381즉
21 회 2020학년도 [대학수학능력시험	401즉
22 회 2019 학년도 [대학수학능력시험	42 1፭
23 회 2018 학년도 [대학수학능력시험	441
24 회 2017 학년도 [대학수학능력시험	461
25 회 2022 학년도 [대학수학능력시험 예시문항	48 1

● 정답과 해설 분권 별책

구성과 특징

Structure & Features

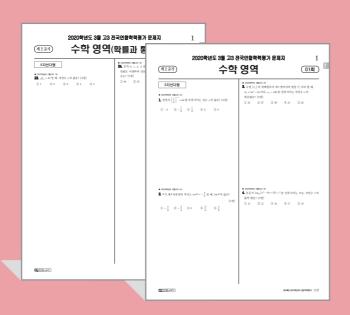
25亿의 经证价量 经放政 军官司 墨叫姐

Check Point

「리얼 오리지널」 수학 영역은?

수능 '시험지 형식'과 동일합니다.

수능 '출제 형식'과 동일합니다.


● 공통 과목이 먼저, 선택 과목은 뒤에 배치되고,

❷ 공통 과목의 문항수와 배점은 [8쪽, 22문항 74점]

선택 과목은 [각 4쪽, 8문항 26점] 총 100점으로

문제지 쪽수가 공통 8쪽 + 선택(4쪽 + 4쪽 + 4쪽) 총 20쪽으로

出 经对此 被告 此时 差计空 针的 吸如다.

실제 시험지와 똑같은 문제지

수학영역 수능기출 모의고사는 총 25회분의 문제가 수록되어

● 리얼 오리지널 모의고사는 실제 시험지의 크기와 느낌을 그대로

살려 실전과 동일한 조건 속에서 문제를 풀어 볼 수 있습니다.

❷ 문제를 풀기 전에 먼저 학습 체크 표에 학습 날짜와 시간을 기록

5지선다형

수학 영역

하고, 타이머를 작동해 실전처럼 문제를 풀어 보십시오.

있으며, 실전과 동일하게 학습할 수 있습니다.

제2로세 수학 영역(확률과 **통**

5지선다형

수학 영역(미적분 5지선다행 수학 영역 [제2교사] 5지선다웹

2

2022 수능 체제 [공통과목+선택과목] 반영

2022학년도 수능 체제를 반영해 공통과목과 선택과목으로

● 신수능 체제를 반영하여 [공통과목]+[선택과목]으로 재구성을

문제지에 8문항」씩 수록하여 [총 20쪽]으로 구성했습니다.

❷ 신수능 체제에 맞추어 배점 및 단답형 문항 수까지 출제 유형을

반영했으며, 최신 우수 문항을 중심으로 재구성을 했습니다.

했으며, 공통과목은 「8쪽에 22문항」 선택과목은 모두 「각 4쪽

재구성을 했으며, 신수능 출제 형식에 맞추었습니다.

3

실전과 동일한 OMR 체크카드

정답 마킹을 위한 OMR 체크카드는 실전력을 높여주며 부록

❷ 답을 밀려 썼을 때 교체하는 연습도 중요하며, 추가로 OMR 체크 카드가 필요하면 홈페이지 자료실에서 다운로드 받을 수 있습니다.

형태로 모의고사 문제편 뒷부분에 수록되었습니다.

● OMR 체크카드는 실전과 동일한 형태로 제공되며, 모의고사에서 마킹 연습은 또 하나의 실전 연습입니다.

해설편 문제 ALL 수록 & 명쾌한 해설

수학 해설편에 문제를 모두 수록해 학습이 편리하고, 해설도 강화되어 혼자서도 학습이 충분합니다.

- 문제편과 해설편을 동시에 펼쳐서 공부하지 않아도 OK! 해설편에 문제를 ALL 수록하여 학습이 편리해졌습니다.
- ❷ 자세하고 명쾌한 해설을 수록했으며, 문제 보기와 단계적인 풀이 방법을 제시해 문제 풀이가 확실히 쉬워집니다.

是社是 可给社社 可能 学祖和祖

수능 시험장에가 된 많은 학생들이 失선 환경과 진당장 때문에 실택을 1살위하지 못하는 거우가 막습니다. 们是对洲亚, 碧北 亚位年91141 'युरार लक्ष्ममा लक्षर युरासमा' 部站性 对时部站以다.

2022 수능 [수학 예시 문항] 수록

2022학년도 수능 체제에서 수학영역의 가장 큰 변화는 [공통 과목]과 [선택과목]으로 나누어지는 부분입니다.

- **1** 2022 수능부터 [수 I, 수 II]는 공통 과목이 되었고 [확률과 통계, 미적분, 기하]는 선택과목이 되었습니다.
- ❷ 2022 수능 예시 문항을 풀어 봄으로써 신수능의 [유형과 형식]을 정확히 파악할 수 있도록 했습니다.(25회차에 수록)

빠른 정답 체크표 & 오답 BEST

문제를 푼 후 정답을 빠르게 확인할 수 있는 [정답 체크표]와 오답률 BEST에 해당하는 문항이 표기되어 있습니다.

- ◆ 수능기출 25회 모의고사는 정답과 해설편에 책갈피로 사용이 가능한 [빠른 정답 체크표]를 제공합니다.
- ❷ 오답률 BEST에 해당하는 문제는 많이 틀린 이유와 매력적인 오답을 피하는 방법까지 자세한 해설을 제공합니다.

·皇如外部的型 经利 午 们起初十 等能到回影似的 OMR 計話

02

제 2 교시

수학 영역

● 2020학년도 3월(고3 가)

최솟값은? [3점]

 $\mathbf{3}$. 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때,

 $S_n = 2n^2 - 3n$ 이다. $a_n > 100$ 을 만족시키는 자연수 n의

① 25 ② 27 ③ 29 ④ 31 ⑤ 33

회분별 학습 체크표

● 수학영역 | 회분당 학습 시간 (100분)

V 1 7 0 7 1 -					
회분	학습 날짜	학습 시간	채점 결과 점수	틀린 문제	시간 부족 문제
○ 1 회 2020학년도 3월	월 일	시 분~ 시 분			
02 회 2019학년도 3월	월 일	시 분~ 시 분			
03 회 2018학년도 3월	월 일	시 분~ 시 분			
04 회 2020학년도 4월	월 일	시 분~ 시 분			
○ 5 회 2019학년도 4월	월 일	시 분~ 시 분			
○ 6 회 2021학년도 6월	월 일	시 분~ 시 분			
0 7 회 2020학년도 6월	월 일	시 분~ 시 분			
● 8 회 2019학년도 6월	월 일	시 분~ 시 분			
09 회 2018학년도 6월	월 일	시 분~ 시 분			
1 0 회 2017학년도 6월	월 일	시 분~ 시 분			
1 1 회 2020학년도 7월	월 일	시 분~ 시 분			
1 2 회 2019학년도 7월	월 일	시 분~ 시 분			
1 3 회 2021학년도 9월	월 일	시 분~ 시 분			
1 4 회 2020학년도 9월	월 일	시 분~ 시 분			
1 5 회 2019학년도 9월	월 일	시 분~ 시 분			
1 6 회 2018학년도 9월	월 일	시 분~ 시 분			
1 7 회 2017학년도 9월	월 일	시 분~ 시 분			
1 8 회 2020학년도 10월	월 일	시 분~ 시 분			
1 9 회 2019학년도 10월	월 일	시 분~ 시 분			
20 회 2021학년도 수능	월 일	시 분~ 시 분			
21회 2020학년도 수능	월 일	시 분~ 시 분			
22 회 2019학년도 수능	월 일	시 분~ 시 분			
23 회 2018학년도 수능	월 일	시 분~ 시 분			
24 회 2017학년도 수능	월 일	시 분~ 시 분			
25 회 2022학년도 수능 예시	월 일	시 분~ 시 분			

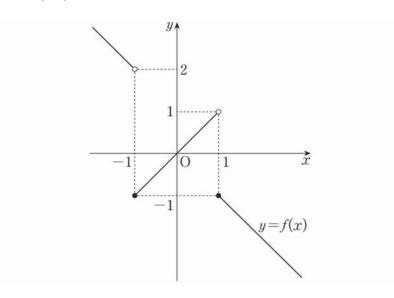
^{※ 〈}수학영역〉은 재구성이므로 [등급 컷]이 제공되지 않습니다.

5지선다형

- 2020학년도 3월(고3 나)
- 1. 방정식 $\left(\frac{1}{4}\right)^{-x} = 64$ 를 만족시키는 실수 x의 값은? [2점]
- ① -3 ② $-\frac{1}{3}$ ③ $\frac{1}{3}$ ④ 3 ⑤ 9

- 2020학년도 3월(고3 가)
 - **4.** 부등식 $\log_{18}(n^2-9n+18)<1$ 을 만족시키는 모든 자연수 n의 값의 합은? [3점]

 - ① 14 ② 15 ③ 16 ④ 17 ⑤ 18

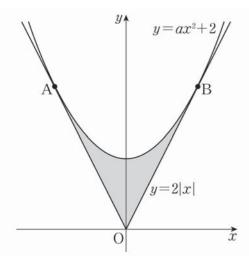

2. θ 가 제 3 사분면의 각이고 $\cos\theta = -\frac{4}{5}$ 일 때, $\tan\theta$ 의 값은?

Q 해설편 p.004

수학 영역

● 2020학년도 3월(고3 가)

5. 함수 y = f(x)의 그래프가 그림과 같다.



 $\lim_{x \to 0+} f(x-1) + \lim_{x \to 1+} f(f(x))$ 의 값은? [3점]

- $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$

- 2020학년도 3월(고3 가)
- 6. 그림과 같이 두 함수 $y = ax^2 + 2$ 와 y = 2|x|의 그래프가

두 점 A, B 에서 각각 접한다. 두 함수 $y=ax^2+2$ 와 y=2|x|의 그래프로 둘러싸인 부분의 넓이는? (단, a는 상수이다.) [3점]

- ① $\frac{13}{6}$ ② $\frac{7}{3}$ ③ $\frac{5}{2}$ ④ $\frac{8}{3}$ ⑤ $\frac{17}{6}$

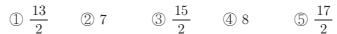
- 2020학년도 3월(고3 나)
- 7. 등차수열 $\{a_n\}$, 등비수열 $\{b_n\}$ 에 대하여 $a_1 = b_1 = 3$ 이고

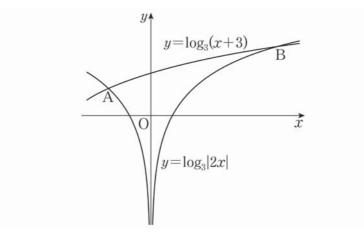
$$b_3=-\,a_2,\ a_2+b_2=\,a_3+b_3$$

일 때, a₃의 값은? [3점]

- $\bigcirc 1 9$ $\bigcirc 2 3$ $\bigcirc 3 \ 0$ $\bigcirc 4 \ 3$ $\bigcirc 5 \ 9$

- 2020학년도 3월(고3 나)
- 8. 최고차항의 계수가 1 인 이차함수 y = f(x)의 그래프가 x축에 접한다. 함수 g(x) = (x-3)f'(x)에 대하여 곡선 y = g(x)가 y축에 대하여 대칭일 때, f(0)의 값은? [3점]


- ② 4 ③ 9 ④ 16 ⑤ 25
- 2020학년도 3월(고3 나)
- **10.** 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여


$$a_{n+1} = \sum_{k=1}^{n} k a_k$$

를 만족시킨다. $a_1=2$ 일 때, $a_2+\frac{a_{51}}{a_{50}}$ 의 값은? [4점]

- ① 47 ② 49 ③ 51 ④ 53
- **⑤** 55

- 2020학년도 3월(고3 가)
- 9. 함수 $y = \log_3 |2x|$ 의 그래프와 함수 $y = \log_3 (x+3)$ 의 그래프가 만나는 서로 다른 두 점을 각각 A, B라 하자. 점 A를 지나고 직선 AB와 수직인 직선이 y축과 만나는 점을 C라 할 때, 삼각형 ABC의 넓이는? (단, 점 A의 x좌표는 점 B의 *x* 좌표보다 작다.) [4점]

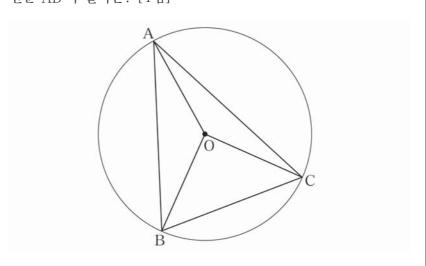
002 수능기출 25회 모의고사 수학영역 [리얼 오리지널]

● 2020학년도 3월(고3 가)

11. 함수 f(x)가 모든 실수 x에 대하여

$$f(x) = x^3 - 4x \int_0^1 |f(t)| dt$$

를 만족시킨다. f(1) > 0일 때, f(2)의 값은? [4점]


- ① 6 ② 7 ③ 8 ④ 9 ⑤ 10

- 2020학년도 3월(고3 가)
- 12. 0 < a < 6 인 실수 a 에 대하여 원점에서

곡선 y = x(x-a)(x-6)에 그은 두 접선의 기울기의 곱의 최솟값은? [4점]

- $\bigcirc -54$ $\bigcirc -51$ $\bigcirc -48$ $\bigcirc -45$ $\bigcirc -42$

- 2020학년도 3월(고3 가)
- 13. 그림과 같이 중심이 0 이고 반지름의 길이가 $\sqrt{10}$ 인 원에 내접하는 예각삼각형 ABC에 대하여 두 삼각형 OAB, OCA의 넓이를 각각 S_1 , S_2 라 하자. $3S_1=4S_2$ 이고 $\overline{\mathrm{BC}}=2\sqrt{5}$ 일 때, 선분 AB의 길이는? [4점]

① $2\sqrt{7}$ ② $\sqrt{30}$ ③ $4\sqrt{2}$ ④ $\sqrt{34}$ ⑤ 6

- 2020학년도 3월(고3 나)
- 14. 최고차항의 계수가 1 인 삼차함수 f(x) 에 대하여 함수 g(x) 를

$$g(x) = \int_{0}^{x} f(t)dt + f(x)$$

라 할 때, 함수 g(x)는 다음 조건을 만족시킨다.

- (가) 함수 g(x)는 x=0에서 극댓값 0을 갖는다.
- (나) 함수 g(x)의 도함수 y=g'(x)의 그래프는 원점에 대하여 대칭이다.

f(2)의 값은? [4점]

- $\bigcirc -5$ $\bigcirc -4$ $\bigcirc -3$ $\bigcirc -2$ $\bigcirc -1$

● 2020학년도 3월(고3 가)

6

15. 0 이 아닌 실수 m에 대하여 두 함수

$$f(x) = 2x^3 - 8x,$$

$$g(x) = \begin{cases} -\frac{47}{m}x + \frac{4}{m^3} & (x < 0) \\ 2mx + \frac{4}{m^3} & (x \ge 0) \end{cases}$$

이 있다. 실수 x에 대하여 f(x)와 g(x) 중 크지 않은 값을 h(x)라 할 때, 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?

ㄱ.
$$m = -1$$
일 때, $h\left(\frac{1}{2}\right) = -5$ 이다.

- L. m = -1일 때, 함수 h(x)가 미분가능하지 않은 x의 개수는 2이다.
- \Box . 함수 h(x)가 미분가능하지 않은 x의 개수가 1인 양수 m의 최댓값은 6이다.
- ① 7 2 7, L 3 7, E

- ④ ∟, ⊏
 ⑤ ¬, ∟, ⊏

단답형

● 2020학년도 3월(고3 나)

16. $\sum_{k=1}^{5} k^2$ 의 값을 구하시오. [3점]

- 2020학년도 3월(고3 나)
- 17. 함수 $f(x) = x^4 + 3x^2 + 9x 27$ 에 대하여 f'(1)의 값을 구하시오. [3점]

제 2 교시

수학 영역(확률과 통계)

5지선다형

- 2017학년도 7월(고3 가)
- **23.** $_{3}$ H $_{n}$ = 21 일 때, 자연수 n의 값은? [2점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

- 2020학년도 3월(고3 가)
- **24.** 숫자 0, 1, 2, 3 중에서 중복을 허락하여 네 개를 선택한 후, 일렬로 나열하여 만든 네 자리 자연수가 2100보다 작은 경우의 수는? [3점]
- ① 80 ② 85 ③ 90 ④ 95 ⑤ 100

수학 영역(확률과 통계)

● 2011학년도 수능(고3 가)

25. 어느 행사장에는 현수막을 1개씩 설치할 수 있는 장소가 5곳이 있다. 현수막은 A. B. C 세 종류가 있고, A는 1개, B는 4개, C는 2개가 있다. 다음 조건을 만족시키도록 현수막 5개를 택하여 5곳에 설치할 때, 그 결과로 나타날 수 있는 경우의 수는?(단, 같은 종류의 현수막끼리는 구분하지 않는다.) [3점]

- (가) A는 반드시 설치한다.
- (나) B는 2곳 이상 설치한다.

② 65 ③ 75 ④ 85 ⑤ 95

● 2014학년도 6월(고3 B)

26. 고구마피자, 새우피자, 불고기피자 중에서 m개를 주문하는 경우의 수가 36일 때, 고구마피자, 새우피자, 불고기피자를 적어도 하나씩 포함하여 m개를 주문하는 경우의 수는? [3점]

① 12 ② 15 ③ 18 ④ 21 ⑤ 24

● 2020학년도 3월(고3 가)

27. 흰 공 2개, 빨간 공 2개, 검은 공 4개를 일렬로 나열할 때, 흰 공은 서로 이웃하지 않게 나열하는 경우의 수는? (단. 같은 색의 공끼리는 서로 구별하지 않는다.) [3점]

① 295 ② 300 ③ 305 ④ 310 ⑤ 315

● 2018학년도 10월(고3 가)

28. 다음은 4 이상의 자연수 n에 대하여 등식

 $a \times b \times c \times d = 2^n \times 3^n$

을 만족시키는 2 이상의 자연수 a, b, c, d의 순서쌍 (a, b, c, d) 중에서 a+b+c+d가 짝수가 되도록 하는 모든 순서쌍의 개수를 구하는 과정이다.

 $a=2^{x_1}\times 3^{y_1}$, $b=2^{x_2}\times 3^{y_2}$, $c=2^{x_3}\times 3^{y_3}$, $d=2^{x_4}\times 3^{y_4}$ 이라 하면

 $x_1 + x_2 + x_3 + x_4 = n$, $y_1 + y_2 + y_3 + y_4 = n$

(단, i=1, 2, 3, 4에 대하여 x_i, y_i 는 음이 아닌 정수) 이다. 이때 a+b+c+d가 짝수이므로 a, b, c, d가 모두 짝수이거나 a, b, c, d 중에서 2개만 짝수이다.

(i) a, b, c, d가 모두 짝수인 경우

 x_1, x_2, x_3, x_4 가 모두 자연수이고 y_1, y_2, y_3, y_4 는 음이 아닌 정수이므로 순서쌍

 $(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$ 의 개수는

 $_{4}$ $\mathrm{H}_{\boxed{(7)}} \times _{4}$ $\mathrm{H}_{n} \cdots \bigcirc$

(ii) a, b, c, d 중에서 2개만 짝수인 경우

 x_1, x_2, x_3, x_4 중에서 자연수가 2개이고 0이 2개이므 로 순서쌍 (x_1, x_2, x_3, x_4) 의 개수는

 $_4$ C $_2$ × (나)

이다. 이때 a, b, c, d 중 홀수인 두 수는 1이 될 수 없으므로 순서쌍 (y_1, y_2, y_3, y_4) 의 개수는

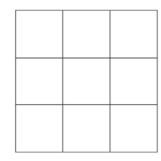
4H (다)

이다. 따라서 순서쌍

 $(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$ 의 개수는

 $_4\text{C}_2 imes$ (4) $\times_4\text{H}_{\text{(th)}}$ \cdots C

(i), (ii)에 의하여 구하는 경우의 수는 ①+ⓒ이다.


위의 (7), (4), (7)에 알맞은 식을 각각 f(n), g(n), h(n) 이라 할 때, f(6)+g(7)+h(8)의 값은? [4점]

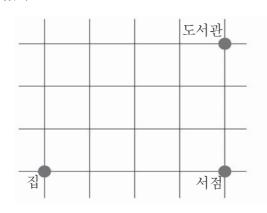
① 13 ② 14 ③ 15 ④ 16 ⑤ 17

단 답 형

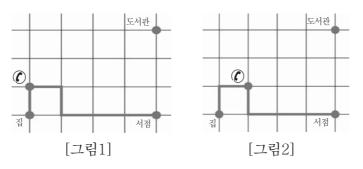
● 2020학년도 3월(고3 가)

29. 그림과 같이 합동인 9개의 정사각형으로 이루어진 색칠판이 있다.

빨간색과 파란색을 포함하여 총 9가지의 서로 다른 색으로 이 색칠판을 다음 조건을 만족시키도록 칠하려고 한다.


- (가) 주어진 9가지의 색을 모두 사용하여 칠한다.
- (나) 한 정사각형에는 한 가지 색만을 칠한다.
- (다) 빨간색과 파란색이 칠해진 두 정사각형은 꼭짓점을 공유하지 않는다.

색칠판을 칠하는 경우의 수는 $k \times 7!$ 이다. k의 값을 구하시오. (단, 회전하여 일치하는 것은 같은 것으로 본다.) [4점]


● 2012학년도 7월(고3 가)

경로이다.

30. 그림과 같이 이웃한 두 교차로 사이의 거리가 모두 같은 도로망이 있다.

철수가 집에서 도로를 따라 최단거리로 약속장소인 도서관으로 가다가 어떤 교차로에서 약속장소가 서점으로 바뀌었다는 연락 을 받고 곧바로 도로를 따라 최단거리로 서점으로 갔다. 집에서 서점까지 지나 온 길이 같은 경우 하나의 경로로 간주한다. 예를 들어, [그림1]과 [그림2]는 연락받은 위치는 다르나, 같은

철수가 집에서 서점까지 갈 수 있는 모든 경로의 수를 구하시오. (단, 철수가 도서관에 도착한 후에 서점으로 가는 경우도 포함한다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했 는지 확인하시오.

제 2 교시

수학 영역(미적분)

01호

5지선다형

● 2020학년도 3월(고3 가)

2 2

23.
$$\lim (\sqrt{4n^2+2n+1} - \sqrt{4n^2-2n-1})$$
의 값은? [2점]

③ 3

4 4 **5** 5

● 2010학년도 6월(고3 나)

24. 두 수열 $\{a_n\}$, $\{b_n\}$ 이 모든 자연수 n에 대하여 다음 조건을 만족시킬 때, $\lim b_n$ 의 값은? [3점]

$$(7 \}) \ \ 20 - \frac{1}{n} < a_n + b_n < 20 + \frac{1}{n}$$

(나)
$$10 - \frac{1}{n} < a_n - b_n < 10 + \frac{1}{n}$$

2 4 3 5 4 6

⑤ 7

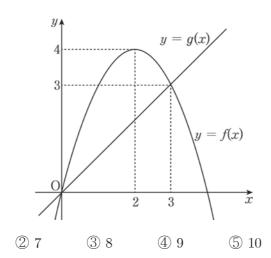
수학 영역(미적분)

● 2008학년도 3월(고3 나)

25. 등비수열 $\left\{ \left(-\sin\frac{k\pi}{4} \right)^n \right\}$ 이 수렴하도록 하는 10 이하의 자연수 k 의 개수는? [3점]

- 26

- 3 7
- 4 8


⑤ 9

● 2016학년도 3월(고3 나)

26. 그림과 같이 곡선 y = f(x)와 직선 y = g(x)가 원점과

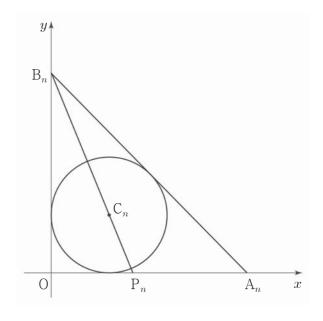
점 (3, 3)에서 만난다. $h(x) = \lim_{n \to \infty} \frac{\{f(x)\}^{n+1} + 5\{g(x)\}^n}{\{f(x)\}^n + \{g(x)\}^n}$ 일 때,

h(2)+h(3)의 값은? [3점]

● 2020학년도 3월(고3 가)

27. 두 수열 $\{a_n\}$, $\{b_n\}$ 이

$$\lim_{n \to \infty} n^2 a_n = 3, \lim_{n \to \infty} \frac{b_n}{n} = 5$$


를 만족시킬 때, $\lim_{n\to\infty} na_n(b_n+2n)$ 의 값은? [3점]

- ① 21 ② 22 ③ 23 ④ 24 ⑤ 25

● 2015학년도 4월(고3 A)

28. 자연수 n에 대하여 그림과 같이 두 점 $A_n(n, 0)$, $B_n(0, n+1)$ 이 있다. 삼각형 OA_nB_n 에 내접하는 원의 중심을 C_n 이라 하고, 두 점 B_n 과 C_n 을 지나는 직선이 x축과 만나는 점을 P_n 이라

하자.
$$\lim_{n\to\infty}\frac{\overline{\mathrm{OP}_n}}{n}$$
의 값은? (단, O는 원점이다.) [4점]

②
$$\sqrt{2}-1$$

$$32-\sqrt{2}$$

$$4 \frac{\sqrt{2}}{2}$$

(5)
$$2\sqrt{2}-3$$

단 답 형

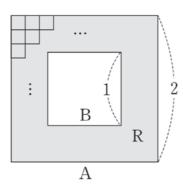
● 2010학년도 6월(고3 가)

29. 최고차항의 계수가 1인 이차함수 f(x)와 두 함수

$$g(x) = \lim_{n \to \infty} \frac{x^{2n-1} - 1}{x^{2n} + 1}, \ h(x) = \begin{cases} \frac{|x|}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

에 대하여 함수 f(x)g(x)와 함수 f(x)h(x)가 모두 연속함수일 때, f(10)의 값을 구하시오. [4점]

● 2010학년도 수능(고3 나)


30. 그림과 같이 한 변의 길이가 2인 정사각형 A와 한 변의 길이가 1인 정사각형 B는 변이 서로 평행하고, A의 두 대각선의 교점과 B의 두 대각선의 교점이 일치하도록 놓여 있다. A와 A의 내부에서 B의 내부를 제외한 영역을 R라 하자.

2 이상인 자연수 n에 대하여 한 변의 길이가 $\frac{1}{n}$ 인 작은 정사각형을 다음 규칙에 따라 R에 그린다.

(가) 작은 정사각형의 한 변은 A의 한 변에 평행하다.

(나) 작은 정사각형들의 내부는 서로 겹치지 않도록 한다.

이와 같은 규칙에 따라 R에 그릴 수 있는 한 변의 길이가 $\frac{1}{2}$ 인 작은 정사각형의 최대 개수를 a_n 이라 하자. 예를 들어, $a_2 = 12$, $a_3=20$ 이다. $\lim_{n\to\infty} \frac{a_{2n+1}-a_{2n}}{a_{2n}-a_{2n-1}}=c$ 라 할 때, 100c의 값을 구하시오. [4점]

* 확인 사항

○ 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했 는지 확인하시오.

제 2 교시

수학 영역(기하)

01호

5지선다형

● 2017학년도 4월(고3 가)

23. 쌍곡선 $\frac{x^2}{4} - \frac{y^2}{9} = 1$ 의 주축의 길이는? [2점]

2 4 3 6 4 8 5 10

● 2008학년도 9월(고3 가)

24. 타원 $x^2 + 9y^2 = 9$ 의 두 초점 사이의 거리를 d라 할 때,

 d^2 의 값은? [3점]

① 30 ② 32 ③ 34 ④ 36

(5) 38

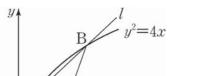
016 수능기출 25회 모의고사 수학영역 [리얼 오리지널] Q 해설편 p.013 Q 해설편 p.014 [01회] 2020학년도 3월 학력평가 017

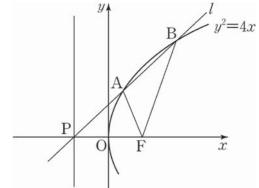
- 2018학년도 10월(고3 가)
- **25.** 직선 y = mx 가 두 쌍곡선 $x^2 y^2 = 1$, $\frac{x^2}{4} \frac{y^2}{64} = -1$ 중 어느 것과도 만나지 않도록 하는 정수 m의 개수는? [3점]
- ① 2 ② 4 ③ 6 ④ 8 ⑤ 10

● 2017학년도 4월(고3 가)

26. 좌표평면에서 점 (2,0)을 지나고 기울기가 양수인 직선이 포물선 $y^2 = 8x$ 와 만나는 두 점을 각각 P, Q라 하자. 선분 PQ의 길이가 17일 때, 두 점 P, Q의 x좌표의 합은? [3점]

- ② 4 ③ 6 ④ 8 ⑤ 10


● 2012학년도 6월(고3 가)

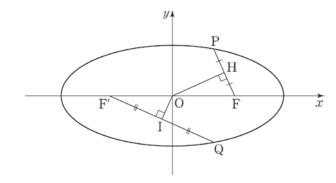

27. 원 $(x-4)^2 + y^2 = r^2$ 과 쌍곡선 $x^2 - 2y^2 = 1$ 이 서로 다른 세 점에서 만나기 위한 양수 r의 최댓값은? [3점]

- ① 4 ② 5 ③ 6 ④ 7 ⑤ 8

- 2013학년도 6월(고3 가)

28. 포물선 $y^2 = 4x$ 의 초점을 F, 준선이 x축과 만나는 점을 P, 점 P를 지나고 기울기가 양수인 직선 l이 포물선과 만나는 두 점을 각각 A, B라 하자. \overline{FA} : \overline{FB} =1:2일 때, 직선 l의 기울기는?

018 수능기출 25회 모의고사 수학영역 [리얼 오리지널]


수학 영역(기하)

단 답 형

● 2013학년도 6월(고3 가)

29. 두 점 F(5, 0), F'(-5, 0)을 초점으로 하는 타원 위의 서로 다른 두 점 P, Q에 대하여 원점 O에서 선분 PF와 선분 QF'에 내린 수선의 발을 각각 H와 I라 하자.

점 H와 점 I가 각각 선분 PF와 선분 QF'의 중점이고, $\overline{OH} \times \overline{OI} = 10$ 일 때, 이 타원의 장축의 길이를 l이라 하자. l^2 의 값을 구하시오. (단, $\overline{OH} \neq \overline{OI}$) [4점]

● 2016학년도 7월(고3 가)

30. 두 양수 m, p 에 대하여 포물선 $y^2 = 4px$ 와 직선 y = m(x-4)가 만나는 두 점 중 제1사분면 위의 점을 A, 포물선의 준선과 x축이 만나는 점을 B, 직선 y=m(x-4)와 y축이 만나는 점을 C 라 하자. 삼각형 ABC 의 무게중심이 포물선의 초점 F 와 일치할 때, AF+BF 의 값을 구하시오 [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했 는지 확인하시오.

Q 해설편 p.015

회] 리얼 오리지널 모의고사 답안지

문형

문형을 확인 후 표기

통 10

1 2 3 4 9

※ 답안지 작성(표기)은 반드시 검은색 컴퓨터용 사인펜만을 사용하고, 연필 또는 샤프 등의 필기구를 절대 사용하지 마십시오.

괴 수 학 영 역 **결시자 확인** (수험생은 표기하지 말것.) 검은색 컴퓨터용 사인펜을 사용하여 수험번호란과 옆란을 표기

※ 문제지 표지에 안내된 필적 확인 문구를 아래 '필적 확인란'에 정자로 반드시 기재하여야 합니다.

필 적 확인란

성 명 수 험 번 호 0 0 0 홀수형(짝수형 (3 | 3 | 3 | 3 | 3 3 3 3 ※문제의

본인 여부, 수험번호 및 감독관 서명 🔻 문형의 표기가 정확한지 |확 인|(또는 확인, 옆란에 서명 또는

8 8

9 9

9

11 1 2 3 4 5 1 2 3 4 5 12 1 2 3 4 5 13 1 2 3 4 9 14 1 2 3 4 15 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 9 1 2 3 4 5

※ 단답형 답란 표기방법 • 십진법에 의하되, 반드시 자리에 맞추어

정답이 한 자리인 경우 일의 자리에만 표기하거나, 십의 자리 @에 표기하고 일의 자리에 표기

• 정답 100 → 백의 자리 ①, 십의 자리 0, 일의 자리 0 •정답 98 → 십의 자리 9,

일의 자리 8 • 정답 5 → 일의 자리 5 또는 십의 자리 @, 일의 자리 ⑤

리얼 오리지널 | 수능기출 (25회)

회] 리얼 오리지널 모의고사 답안지

※ 답안지 작성(표기)은 반드시 검은색 컴퓨터용 사인펜만을 사용하고, 연필 또는 샤프 등의 필기구를 절대 사용하지 마십시오

수학영역

결시자 확인 (수험생은 표기하지 말것.) 검은색 컴퓨터용 사인펜을 사용하여 수험번호란과 옆란을 표기

※ 문제지 표지에 안내된 필적 확인 문구를 아래 '필적 확인란'에 정자로 반드시 기재하여야 합니다.

필 적 확인란

> 성 명 수 험 번 호 문형 홀수형(2 2 2 1 짝수형(3 3 3 (※문제의 문형을 확인 취 6 6 표기 7 7 9

확 인 ((또는 *)* 날 인

본인 여부, 수험번호 및 문형의 표기가 정확한지 확인, 옆란에 서명 또는 날인

	1	1 2 3 4 5	11	1 2 3	4 5
	2	1 2 3 4 5	12	1 2 3	4 5
	3	1 2 3 4 5	13	1 2 3	4 5
	4	1 2 3 4 5	14	1 2 3	4 5
	5	1 2 3 4 5	15	1 2 3	4 5
	6	1 2 3 4 5			
	7	1 2 3 4 5			
공	8	1 2 3 4 5			

9

통 10

1 2 3 4 5

1 2 3 4 5

※ 단답형 답란 표기방법 십진법에 의하되 반드시 자리에 맞추어

정답이 한 자리인 경우 일의 자리에만 표기하거나. 십의 자리 ⓒ에 표기하고 일의 자리에 표기

※ 예시 • 정답 100 → 백의 자리 1, 십의 자리 0, 일의 자리 0 정답 98 → 십의 자리 ⑨,

일의 자리 8 • 정답 5 → 일의 자리 ⑤ 또는 십의 자리 @, 일의 자리 ⑤

리얼 오리지널 | 수능기출 (25회)

② 과 수 학 영 역

결시자 확인 (수험생은 표기하지 말것.) 검은색 컴퓨터용 사인펜을 사용하여 수험번호란과 옆란을 표기

※ 문제지 표지에 안내된 필적 확인 문구를 아래 '필적 확인란'에 정자로 반드시 기재하여야 합니다.

확인란

샫	1 2	병							
	수	_	험		번	3	호		
				_					문형
	0	0	0		0	0	0	0	중소청 ○
1	1	1	1		1	1	1	1	홀수형 ○
2	2	2	2		2	2	2	2	짝수형 ()
3	3	3	3		3	3	3	3	
4	4	4	4		4	4		4	※문제의
5	5	5	5		5	5		5	문형을
6	6		6		6	6		6	확인 후
7	7		7		7	7		7	표기
8	8		8		8	8		8	
9	9		9		9	9		9	

감독관 본인 여부, 수험번호 및 서 명 🔻
 확
 인

 (수행% 회)
 문형의 표기가 정확한지 확인, 옆란에 서명 또는 날인

		공통	과목			~ 다다짐 다리 ㅠ기
문번	답	란	문번	답	란	│ ※ 인접영 접단 표기
	0 0			0 0		

14 1 2 3 4 5

15 1 2 3 4

1 2 3 4 5

1 2 3 4 5

8 1 2 3 4 5

9 1 2 3 4 5

통 10 1 2 3 4 5

4 5	의하되,
4 5 E	의하되, 나리에 맞추이 난 자리인 경
4 5 . 정	가리인 경

정답이 한 자리인 경우 일의 자리에만 표기하거나, 십의 자리 ⓒ에 표기하고 일의 자리에 표기

정답 100 → 백의 자리 ①, 십의 자리 0, 일의 자리 0

정답 98 → 십의 자리 9, 일의 자리 8 정답 5 → 일의 자리⑤, 또는 십의 자리 (), 일의 자리 (5

	답을	정확히	표시하	시오		
		선택	4 2	나목		
	문번		답		란	
	23	1	2	3	4	(
	24	1	2	3	4	(
	25	1	2	3	4	(
	26	1	2	3	4	(
	27	1	2	3	4	(
ч	28	1	2	3	4	(
Н						

전 전

사 사 전

※ 자신이 선택한 과목인지 확인하고,

			18번		\bigcap 1	19번			20 t	<u>H</u>	ľ	-2	21반	Ţ	١	$\bigcap_{i \in I} 2i$	22년	<u> </u>		2	29년	1		80년	<u>+</u>
일	백	십	일		백	십	일	백	십	일	П	백	십	일	l	백	십	일	괴	백	십	일	백	십	일
0		0	0			0	0		0	0			0	0	l		0	0	-		0	0		0	0
1	1	1	1		1	1	1	1	1	1		1	1	1	l	1	1	1	목	1	1	1	1	1	1
2	2	2	2		2	2	2	2	2	2		2	2	2	l	2	2	2		2	2	2	2	2	2
3	3	3	3		3	3	3	3	3	3		3	3	3	l	3	3	3		3	3	3	3	3	3
4	4	4	4		4	4	4	4	4	4		4	4	4	l	4	4	4		4	4	4	4	4	4
5	5	5	5		5	5	5	5	5	5		5	5	5	l	5	5	5		5	5	5	5	5	5
6	6	6	6		6	6	6	6	6	6		6	6	6	l	6	6	6		6	6	6	6	6	6
7	7	7	7		7	7	7	7	7	7		7	7	7	l	7	7	7		7	7	7	7	7	7
8	8	8	8		8	8	8	8	8	8		8	8	8		8	8	8		8	8	8	8	8	8
9	9	9	9		9	9	9	9	9	9	$\ $	9	9	9		9	9	9		9	9	9	9	9	9

리얼 오리지널 | 수능기출 (25회)

회] 리얼 오리지널 모의고사 답안지

※ 답안지 작성(표기)은 반드시 검은색 컴퓨터용 사인펜만을 사용하고, 연필 또는 샤프 등의 필기구를 절대 사용하지 마십시오.

수학영역

결시자 확인 (수험생은 표기하지 말것.) 검은색 컴퓨터용 사인펜을 사용하여 수험번호란과 옆란을 표기

* 문제지 표지에 안내된 필적 확인 문구를 아래 '필적 확인란'에 정자로 반드시 기재하여야 합니다.

필 적

S	9 6	병								
	수		험 번 호						_	
				_						문형
	0	0	0		0	0	0	0		홀수형 ()
1	1	1	1		1	1	1	1		3 + 8 ∪
2	2	2	2		2	2	2	2		짝수형 ○
3	3	3	3		3	3	3	3	١	
4	4	4	4		4	4		4	۱	*문제의
5	5	5	5	_	5	5		5		문형을
6	6		6		6	6		6		확인 후
7	7		7		7	7		7	l	표기
8	8		8		8	8		8		
9	9		9		9	9		9		

본인 여부, 수험번호 및 (서 명 또는 날 인 문형의 표기가 정확한지 확 인 확인, 옆란에 서명 또는 날인

				7	56	파속					
문번		답		란		문번		답		란	
1	1	2	3	4	5	11	1	2	3	4	5
2	1	2	3	4	5	12	1	2	3	4	5
3	1	2	3	4	5	13	1	2	3	4	5
4	1	2	3	4	5	14	1	2	3	4	5
5	1	2	3	4	5	15	1	2	3	4	5
6	1	2	3	4	5						
7	1	2	3	4	5						

8 1 2 3 4 5

9 1 2 3 4 5

통 10 1 2 3 4 5

십진법에 의하되, 반드시 자리에 맞추어

정답이 한 자리인 경우 일의 자리에만 표기하거나, 십의 자리 ⓒ에 표기하고 일의 자리에 표기

※ 단답형 답란 표기방법

※ 예시 • 정답 100 → 백의 자리 ①, 십의 자리 0, 일의 자리 0 • <u>정답 98</u> → 십의 자리 ⑨, 일의 자리®

• <mark>정답 5 → 일의 자리</mark>⑤, 또는 십의 자리 (0, 일의 자리 (5)

	선택 과목										
	문번	답		란							
	23	1 2	3	4	5						
	24	1 2	3	4	5						
	25	1 2	3	4	5						
	26	1 2	3	4	5						
	27	1 2	3	4	5						
선	28	1 2	3	4	5						
Ι_											
택											

※ 자신이 선택한 과목인지 확인하고,

답을 정확히 표시하시오.

	1	6분	Ţ)	\bigcap	7반	Ŋ	\bigcap	8년	Ŧ)	\bigcap	9반	<u> </u>	\cap	2	0반	Ţ	ľ	2	11반	Ŋ		22년	Ŧ		2	9년	<u> </u>	3	30년	H			
라	백	십	일		백	십	일	백	십	일		백	십	일	1	백	십	일		백	십	일	백	십	일	과	백	십	일	백	십	ľ			
-		0	0			0	0		0	0			0	0		İ	0	0			0	0		0	0	"		0	0		0				
목	1	1	1		1	1	1	1	1	1		1	1	1		1	1	1		1	1	1	1	1	1	목	1	1	1	1	1				
	2	2	2		2	2	2	2	2	2		2	2	2		2	2	2		2	2	2	2	2	2		2	2	2	2	2				
	3	3	3		3	3	3	3	3	3		3	3	3		3	3	3		3	3	3	3	3	3		3	3	3	3	3				
	4	4	4		4	4	4	4	4	4		4	4	4		4	4	4		4	4	4	4	4	4		4	4	4	4	4				
	5	5	5		5	5	5	5	5	5		5	5	5		5	5	5		5	5	5	5	5	5		5	5	5	5	5				
	6	6	6		6	6	6	6	6	6		6	6	6		6	6	6		6	6	6	6	6	6		6	6	6	6	6				
	7	7	7		7	7	7	7	7	7		7	7	7		7	7	7		7	7	7	7	7	7		7	7	7	7	7				
	8	8	8		8	8	8	8	8	8		8	8	8	(8	8	8		8	8	8	8	8	8		8	8	8	8	8				
	9	9	9		9	9	9	9	9	9		9	9	9	l	9	9	9	$\ $	9	9	9	9	9	9		9	9	9	9	9				

리얼 오리지널 | 수능기출 (25회)

2022 수능 시험 대비 ORIGINAL 수능기출 25회 모의고사

수학영역

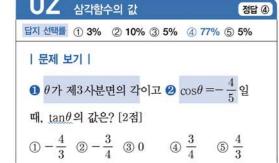
정답과 해설

	-	차례		
01회 2020학년도	3월	전국연합	학력평가	004쪽
02회 2019학년도	3월	전국연합	학력평가	016절
03회 2018학년도	3월	전국연합	학력평가	028절
04회 2020학년도	4월	전국연합	학력평가	039쪽
05회 2019학년도	4월	전국연합	학력평가	051절
06회 2021학년도	6월	모의평가		062쪽
07회 2020학년도	6월	모의평가		076절
08회 2019학년도	6월	모의평가		089절
09회 2018학년도	6월	모의평가		103쪽
10회 2017학년도	6월	모의평가		117절
11회 2020학년도	7월	전국연합	학력평가	128절
12회 2019학년도	7월	전국연합	학력평가	144절
13회 2021학년도	9월	모의평가		157절
14회 2020학년도	9월	모의평가		170절
15회 2019학년도	9월	모의평가		182쪽
16회 2018학년도	9월	모의평가		196쪽
17회 2017학년도	9월	모의평가		209쪽
18회 2020학년도	10월	전국연합	학력평가	223절
19회 2019학년도	10월	전국연합	학력평가	234절
20회 2021학년도	대학	수학능력시	l험	246쪽
21회 2020학년도	대학	수학능력시	험	258至
22회 2019학년도	대학	수학능력시	l험	270절
23회 2018학년도	대학	수학능력시	험	283절
24회 2017학년도	대학	수학능력시	험	295절
25회 2022학년도	대학	수학능력시	험 예시 문항	308至

※ 수록된 답지 선택률(정답률)은 실제와 차이가 있을 수 있습니다. 문제 난도와 매력적인 오답을 파악하는데 참고용으로 활용하시기 바랍니다.

수등 모의과사 전문 출판 입시 플라이

H	•실제 걸린 시간 :	분	초
	• 맞은 문항수 :		개
	• 틀린 문항수 :		개
	• 헷갈린 문항 :		


★ 표기된 문항은 BEST 오답률에 해당하는 문제입니다.

지수함수를 포함한 방정식 답지 선택률 ① 5% ② 6% ③ 4% ④ 84% ⑤ 1% 방정식 $\mathbf{0} \left(\frac{1}{4}\right)^{-x} = 64$ 를 만족시키는 실수 x 의 ① -3 ② $-\frac{1}{3}$ ③ $\frac{1}{3}$ ④ 3 ⑤ 9

l 문제 풀이

● 1에서 지수의 계산으로 밑을 4로 통일하여 방정식을 풀고 x의 값을 구한다.

$$\left(\frac{1}{4}\right)^{-x} = 64, \ \left(4^{-1}\right)^{-x} = 4^3, \ 4^x = 4^3$$
이므로

Ⅰ문제 풀이 Ⅰ

STEP 01

②를 이용하여 tan θ의 값을 구한다.

 θ 가 제3사분면의 각이므로 $\sin \theta < 0$

 $\sin^2\theta + \cos^2\theta = 1 \,\text{od}\, k$

$$\sin\theta = -\sqrt{1 - \cos^2\theta} = -\sqrt{1 - \left(-\frac{4}{5}\right)^2} = -\frac{3}{5}$$

따라서
$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4}$$

수열의 합과 일반항 사이의 관계 정답② 답지 선택률 ① 5% ② 88% ③ 3% ④ 2% ⑤ 2%

수열 $\{a_n\}$ 의 첫째항부터 제n 항까지의 합을 S_n 이라 할 때, **1** $S_n = 2n^2 - 3n$ 이다.

 $2a_n > 100$ 을 만족시키는 자연수 n 의

① 25 ② 27 ③ 29 ④ 31 ⑤ 33

STEP 01

①에서 a_n을 구한 후 ❷를 구한다.

$$a_1 = S_1 = -1$$
 $n \ge 2$ 일 때 $a_n = S_n - S_{n-1}$ $= (2n^2 - 3n) - \{2(n-1)^2 - 3(n-1)\}$ $= 4n - 5$ 그러므로 $a_n = 4n - 5$ $(n \ge 1)$ $a_n > 100$ 에서 $4n - 5 > 100$

 $n > \frac{105}{4} = 26.25$ 따라서 자연수 n의 최솟값은 27이다.

●핵심 공식

 $a_1 = S_1$

ightharpoonup 수열의 합 S_n 을 알고 일반항 a_n 을 구할 때 $a_n = S_n - S_{n-1} \ (n \ge 2)$

04 로그함수를 포함한 부등식

정답 ⑤ 답지 선택률 ① 3% ② 7% ③ 4% ④ 3% ⑤ 83%

부등식 $\log_{18}(n^2-9n+18)<1$ 을 만족시키는 모든 자연수 n 의 값의 합은? [3점]

① 14 ② 15 ③ 16 ④ 17 ⑤ 18

| 문제 풀이 |

STEP 01

로그의 성질을 이용하여 ①의 부등식을 풀어 x의 범위를 구한 후 만족하는 모든 자연수 x의 합을 구한다.

진수 조건에 의해

 $n^2-9n+18>0$, (n-6)(n-3)>0n < 3 또는 n > 6

 $\log_{18}(n^2-9n+18) < 1$ 에서

 $n^2 - 9n + 18 < 18$ 이므로

 $n^2 - 9n < 0$, n(n-9) < 0

1+2+7+8=18

 \bigcirc , \bigcirc 을 모두 만족시키는 n의 값의 범위는 0<n<3 또는 6<n<9 이를 만족시키는 자연수는 1, 2, 7, 8 이므로 구하는 모든 자연수 n의 값의 합은

STEP 01

05 함수의 극한 답지 선택률 ① 15% ② 5% ③ 6% ④ 72% ⑤ 2% | 문제 보기 | 함수 y = f(x) 의 그래프가 그림과 같다. $\lim_{x\to 0+} f(x-1) + \lim_{x\to 1+} f(f(x))$ 의 값은? [3점] $\bigcirc 1 - 2 \quad \bigcirc 2 - 1 \quad \bigcirc 3 \quad 0 \quad \bigcirc 4 \quad 1 \quad \bigcirc 5 \quad 2$

| 문제 풀이 |

STEP 01

그래프에서 $\lim_{x\to 0+} f(x-1)$ 와 $\lim_{x\to 1+} f(f(x))$ 의 극한값을

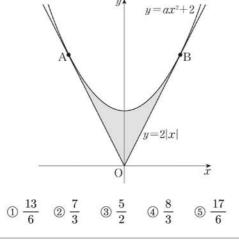
각각 구한 후 합을 구한다.

x-1=t라 하면 $x\rightarrow 0+$ 일 때, $t \rightarrow -1+$ 이므로

 $\lim_{x \to 0+} f(x-1) = \lim_{t \to -1+} f(t) = -1$

f(x) = s 라 하면 $x \rightarrow 1 + 일$ 때, $s \rightarrow -1$ - 이므로

 $\lim_{x \to 1+} f(f(x)) = \lim_{s \to -1-} f(s) = 2$


 $\lim_{x \to 0+} f(x-1) + \lim_{x \to 1+} f(f(x)) = (-1) + 2 = 1$

정적분을 이용한 넓이

정답 ④

답지 선택률 ① 3% ② 6% ③ 10% ④ 77% ⑤ 4%

그림과 같이 두 함수 $y = ax^2 + 2$ 와 y = 2|x|의 그래프가 두 점 A, B 에서 각각 접한다. 두 함수 $y = ax^2 + 2$ 와 y = 2|x|의 그래프로 둘러싸인 부분의 넓이는? (단, a는 상수이다.) [3점]

│ 문제 풀이 │

제2사분면의 두 그래프의 식을 연립하고 판별식을 이용하여 a와 접점의 x좌표를 구한다.

x < 0일 때, 점 A 에서 두 함수 $y = ax^2 + 2$ 와

y = -2x의 그래프가 접하므로 $ax^2 + 2 = -2x$, $\stackrel{\triangle}{=} ax^2 + 2x + 2 = 0$ 이차방정식 \bigcirc 의 판별식을 D라 하면

$$\frac{D}{4} = 1 - 2a = 0$$

접점 A 의 x 좌표는 -2 이다.

점 B 는 점 A 와 y 축에 대하여 대칭이므로 접점 B 의 x 좌표는 2 이다.

그래프의 대칭성과 정적분을 이용하여 구하는 넓이를 구한다. 주어진 두 함수의 그래프가 모두 y축에 대하여 대칭이므로 구하는 넓이는

$$2 \times \int_{0}^{2} \left(\frac{1}{2}x^{2} + 2 - 2x\right) dx$$
$$= 2 \times \left[\frac{1}{6}x^{3} + 2x - x^{2}\right]_{0}^{2} = 2 \times \frac{4}{3} = \frac{8}{3}$$

07 등차수열과 등비수열

답지 선택률 ① 68% ② 8% ③ 6% ④ 10% ⑤ 8%

정답 ①

| 문제 보기 |

등차수열 $\{a_n\}$, 등비수열 $\{b_n\}$ 에 대하여 $a_1 = b_1 = 3$

일 때, a₃ 의 값은? [3점]

 $(1) - 9 \quad (2) - 3 \quad (3) \quad (4) \quad 3 \quad (5) \quad 9$

STEP 01 등차수열과 등비수열의 일반항을 이용하여 ①의 식을 정리하고 연립하여 공비와 공차를 구한 다음 a_3 의 값을

등차수열 $\{a_n\}$ 의 공차를 d, 등비수열 $\{b_n\}$ 의

공비를 r라 하면

 $a_n = 3 + (n-1)d$, $b_n = 3r^{n-1}$ $b_3 = -a_2 = a_2 + b_2 = a_3 + b_3$ 에 대입하면

 $a_2 + b_2 = a_3 - a_2 = d$

그러므로 3+d+3r=d, 3r=-3에서

 $b_3 = -a_2$ 에서 $3r^2 = -(3+d)$

ⓒ에 ⑤을 대입하면

 $3 \times (-1)^2 = -3 - d$ 에서

d = -6

따라서 $a_3 = 3 + 2 \times (-6) = -9$

이차함수의 성질과 도함수

답지 선택률 ① 6% ② 8% ③ 71% ④ 11% ⑤ 4%

1 최고차항의 계수가 1 인 이차함수 y = f(x)의 그래프가 x 축에 접한다. 함수

② g(x) = (x-3)f'(x) 에 대하여 곡선 y = g(x) 가 y 축에 대하여 대칭일 때, f(0) 의

① 1 ② 4 ③ 9 ④ 16 ⑤ 25

| 문제 풀이 |

STEP 01

 $lue{1}$ 에서 미지수를 이용하여 f(x)를 놓고 g(x)를 구한 뒤 2에서 미지수를 구한 다음 f(x), f(0)을 차례로 구한다. 이차함수 f(x)는 최고차항의 계수가 1이고 함수 y = f(x)의 그래프는 x 축에 접하므로 $f(x) = (x-a)^2$ (단, a는 상수이다.) f(x) = (x-a)(x-a)이므로

f'(x) = 2(x-a)

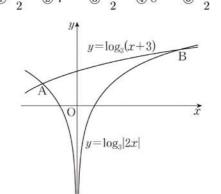
g(x) = (x-3)f'(x)

=2(x-a)(x-3) $=2x^2-2(a+3)x+6a$

함수 y=g(x)의 그래프가 y축에 대하여 대칭이므로 x의 계수가 0이다. 즉, a = -3

따라서 $f(x) = (x+3)^2$ 에서 $f(0) = 3^2 = 9$

09 로그함수의 그래프 정답 ⑤

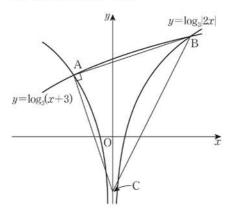

답지 선택률 ① 6% ② 3% ③ 10% ④ 7% ⑤ 74%

| 문제 보기 |

함수 $y = \log_3 |2x|$ 의 그래프와 함수

 $y = \log_3(x+3)$ 의 그래프가 만나는 서로 다른 두 점을 각각 A, B 라 하자. **①** 점 A 를 지나고 직선 AB 와 수직인 직선이 y 축과 만나는 점을 C 라 할 때, 삼각형 ABC 의 넓이는? (단, 점 A 의 x 좌표는 점 B 의 x 좌표보다 작다.) [4점]

①
$$\frac{13}{2}$$
 ② 7 ③ $\frac{15}{2}$ ④ 8 ⑤ $\frac{17}{2}$



│문제 풀이│

STEP 01

..... 🗇

두 그래프의 식을 연립하여 두 점 A , B 의 좌표를 구하고 직선 AB의 기울기를 구한다.

x < 0일 때의 교점 A의 x 좌표는 방정식 $\log_3(-2x) = \log_3(x+3)$ 의 근이므로 -2x = x + 3, 3x = -3, x = -1따라서 점 A 의 좌표는 $A(-1, log_3 2)$ x>0일 때의 교점 B 의 x 좌표는 방정식 $\log_3 2x = \log_3(x+3)$ 의 근이므로

2x = x + 3, x = 3

따라서 점 B 의 좌표는 B $(3, \log_3 6)$ 이다.

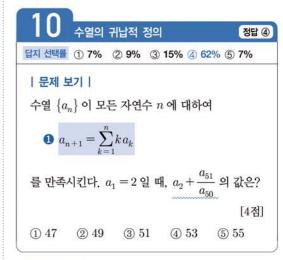
두 점 $A(-1, \log_3 2)$, $B(3, \log_3 6)$ 에 대하여

$$\frac{\log_3 6 - \log_3 2}{3 - (-1)} = \frac{\log_3 \frac{6}{2}}{4} = \frac{1}{4}$$

①의 방정식을 세우고 점 C 의 좌표를 구한다.

점 A 를 지나고 직선 AB 와 수직인 직선의 방정식은 $y - \log_3 2 = -4(x+1)$

 $y = -4x - 4 + \log_3 2$


직선 \bigcirc 이 y 축과 만나는 점 $\mathbb C$ 의 좌표는 $C(0, -4 + \log_3 2)$ 이다.

STEP 03

AB, AC의 길이를 구하고 직각삼각형 ABC의 넓이를

$$\overline{AB} = \sqrt{4^2 + (\log_3 6 - \log_3 2)^2} = \sqrt{17}$$
 $\overline{AC} = \sqrt{(-1)^2 + 4^2} = \sqrt{17}$

 $S = \frac{1}{2} \times \overline{AB} \times \overline{AC} = \frac{1}{2} \times \sqrt{17} \times \sqrt{17} = \frac{17}{2}$

①에 n=1을 대입하여 a_2 를 구한다. ①에 n=n-1을

n=50을 대입하여 $\dfrac{a_{51}}{a_{50}}$ 을 구한다. $a_2+\dfrac{a_{51}}{a_{50}}$ 의 값을

 $a_{n+1} = \sum_{k=1}^{n} k a_k$ 에서 n=1 을 대입하면

 $a_2 = \sum_{k=1}^{1} k a_k = a_1$ 이므로

 $n \geq 2$ 일 때 $a_n = \sum_{k=1}^{n-1} k a_k$ 이므로

 $a_{n+1} - a_n = \sum_{k=1}^{n} k a_k - \sum_{k=1}^{n-1} k a_k$

그러므로 $a_{n+1} = (n+1)a_n$ (단, $n \ge 2$)

위 식에 n=50을 대입하면 $a_{51} = 51 a_{50}$ 이고 $a_{50} > 0$ 이므로

따라서 $a_2 + \frac{a_{51}}{a_{50}} = 2 + 51 = 53$

[보충 석명]

2 이상의 자연수 n에 대하여 $a_n>0$ ····· (*) 임을 수학적 귀납법을 이용하여 보일 수 있다. $a_2=2$ 이고 $n\geq 2$ 일 때 $a_{n+1}=(n+1)a_n$ 이므로

(i) n=2일 때 a₂=2>0 이므로 (*)이 성립한다.

(ii) 2 이상의 자연수 k에 대하여 n=k일 때 (*)이 성립한다고 가정하면 $a_k > 0$ n=k+1 일 때 $a_{k+1}=(k+1)a_k>0$ 이므로 n = k + 1 일 때도 (*)이 성립한다.

따라서 (i), (ii)에 의해 2 이상의 자연수 n에 대하여 $a_n > 0$ 이다.

답지 선택률 ① 17% ② 55% ③ 15% ④ 7% ⑤ 6%

| 문제 보기 |

함수 f(x) 가 모든 실수 x 에 대하여

$$f(x) = x^3 - 4x \int_0^1 |f(t)| dt$$

를 만족시킨다. $\mathbf{1}$ f(1) > 0 일 때, f(2) 의 값은? [4점]

① 6 ② 7 ③ 8 ④ 9 ⑤ 10

| 문제 풀이 |

STEP 01

 $\int_{0}^{1} |f(t)| dt = a$ 라 하고 $\mathbf{0}$ 을 이용하여 a의 범위를

구한다. x의 범위를 나누어 f(x)를 적분하여 a를 구한 다음 f(x), f(2)를 차례로 구한다.

$$a = \int_0^1 \lvert f(t) \rvert dt$$
라 하면 $a > 0$ 이고

$$f(x) = x^3 - 4ax$$

f(1) = 1 - 4a > 0 에서 $a < \frac{1}{4}$

따라서 $0 < a < \frac{1}{4}$ 이다.

 $f(x) = x(x^2 - 4a) = 0$ 에서

x=0 $\Xi = \pm 2\sqrt{a}$ $0 < x < 2\sqrt{a}$ 일 때 f(x) < 0이고

 $x \ge 2\sqrt{a}$ 일 때 $f(x) \ge 0$ 이다.

 $0 < a < \frac{1}{4}$ 에서 $2\sqrt{a} < 1$ 이므로

 $a = \int_{0}^{2\sqrt{a}} \{-f(t)\}dt + \int_{2\sqrt{a}}^{1} f(t)dt$ $= \int_{0}^{2\sqrt{a}} (-t^3 + 4at)dt + \int_{2\sqrt{a}}^{1} (t^3 - 4at)dt$

 $= \left[-\frac{1}{4}t^4 + 2at^2 \right]_0^{2\sqrt{a}} + \left[\frac{1}{4}t^4 - 2at^2 \right]_0^{1}$ $=8a^2-2a+\frac{1}{4}$

 $8a^2 - 3a + \frac{1}{4} = 0$ oil ki

 $32a^2-12a+1=0$, (4a-1)(8a-1)=0

 $0 < a < \frac{1}{4}$ 이므로

 $a = \frac{1}{8}$ ্যান

 $f(x) = x^3 - \frac{1}{2}x$

이때 $f(2) = 2^3 - \frac{1}{2} \times 2 = 7$

12 접선의 방정식

답지 선택률 ① 10% ② 9% ③ 59% ④ 14% ⑤ 8%

| 문제 보기 |

0 < a < 6 인 실수 a 에 대하여 원점에서 곡선 y = x(x-a)(x-6) 에 그은 두 접선의 기울기의 곱의 최솟값은? [4점]

(1) -54 (2) -51 (3) -48 (4) -45 (5) -42

| 문제 풀이 |

STEP 01

원점이 아닌 접점의 좌표를 미지수를 이용하여 놓고 도함수를 이용하여 접선의 방정식을 구한다. 접선이 원점을 지남을 이용하여 접점의 좌표를 구한다.

f(x) = x(x-a)(x-6) 이라 하자. f(0) = 0 이므로 원점은 곡선 y = f(x) 위의 점이고 원점에서 접하는 접선의 기울기는 f'(0) 이다. 원점이 아닌 점 (t, f(t)) 에서의 접선의 방정식은 y - f(t) = f'(t)(x - t)

이고 이 직선이 원점을 지나므로

0-f(t) = f'(t)(0-t)

tf'(t) - f(t) = 0

 $f(x) = x^3 - (a+6)x^2 + 6ax$ $f'(x) = 3x^2 - 2(a+6)x + 6a$

이므로 ①에서

 $t{3t^2-2(a+6)t+6a}-{t^3-(a+6)t^2+6at}=0$ $2t^3 - (a+6)t^2 = 0$, $t^2\{2t - (a+6)\} = 0$ $t \neq 0$ 이므로

 $t = \frac{a+6}{2}$ 이다.

STEP 02

두 접선의 기울기를 각각 구한 후 곱을 구한 다음 미분을 이용하여 최솟값을 구한다.

 $f'(0) = 6a, \ f'\left(\frac{a+6}{2}\right) = -\frac{1}{4}(a^2 - 12a + 36)$

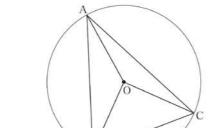
이므로 0 < a < 6인 실수 a에 대하여 두 접선의 기울기의 곱을 q(a) 라 하면

 $g(a) = -\frac{3}{2}(a^3 - 12a^2 + 36a)$

 $g'(a) = -\frac{3}{2}(3a^2 - 24a + 36) = -\frac{9}{2}(a-2)(a-6)$

0 < a < 6 이므로 g'(a) = 0 에서 a = 20 < a < 6 에서 함수 g(a) 의 증가와 감소를 표로 나타내면 다음과 같다.

a	(0)	1574	2	***	(6)
g'(a)		-	0	+	
q(a)		1	_ 10	1	


함수 g(a)는 a=2일 때 극소이면서 최소가 된다. 따라서 0 < a < 6 에서 함수 q(a) 의 최솟값은 a(2) = -48 olth

답지 선택률 ① 9% ② 16% ③ 53% ④ 14% ⑤ 8%

| 문제 보기 |

그림과 같이 중심이 () 이고 반지름의 길이가 $\sqrt{10}$ 인 원에 내접하는 예각삼각형 ABC 에 대하여 두 삼각형 OAB, OCA 의 넓이를 각각 S_1 , S_2 라 하자. ① $3S_1 = 4S_2$ 이고

 $\overline{BC} = 2\sqrt{5}$ 일 때, 선분 AB 의 길이는? [4점]

② $\sqrt{30}$ (1) $2\sqrt{7}$ (4) $\sqrt{34}$ (5) 6

문제 풀이 |

STEP 01

삼각형 OBC의 종류를 파악하여 ∠OBC의 크기를 구한 후 **①**을 이용하여 cos(∠AOB)를 구한다.

(3) $4\sqrt{2}$

 $\overline{BC} = 2\sqrt{5}$, $\overline{OB} = \overline{OC} = \sqrt{10}$ 이므로 삼각형 OBC 는 직각이등변삼각형이고

 $\angle BOC = \frac{\pi}{2}$ 이다.

 $\angle AOB = \alpha$, $\angle AOC = \beta$ 라 하면

 $S_1 = \frac{1}{2} \times (\sqrt{10})^2 \times \sin \alpha = 5 \sin \alpha$

 $S_2 = \frac{1}{2} \times (\sqrt{10})^2 \times \sin \beta = 5 \sin \beta$

주어진 조건에서 $3S_1 = 4S_2$ 이므로

 $\sin \alpha = \frac{4}{3} \sin \beta$

 $\alpha + \beta + \frac{\pi}{2} = 2\pi$ 이므로

 $\beta = \frac{3}{2}\pi - \alpha$

 $\sin \alpha = \frac{4}{3} \sin \left(\frac{3}{2} \pi - \alpha \right)$ $=-\frac{4}{3}\cos\alpha$

 $\sin^2\alpha + \cos^2\alpha = 1 \text{ MH}$ $\frac{16}{9}\cos^2\alpha + \cos^2\alpha = 1$

 $\cos^2 \alpha = \frac{9}{25}$

 $\sin \alpha > 0$ 이므로 \bigcirc 에서 $\cos \alpha < 0$

따라서 $\cos \alpha = -\frac{3}{5}$

STEP 02

코사인법칙을 이용하여 AB 를 구한다.

코사인법칙에 의하여 구하는 선분 AB 의 길이는

$$\overline{AB} = \sqrt{\overline{OA}^2 + \overline{OB}^2 - 2 \times \overline{OA} \times \overline{OB} \cos \alpha}$$

$$= \sqrt{(\sqrt{10})^2 + (\sqrt{10})^2 - 2(\sqrt{10})^2 \times \left(-\frac{3}{5}\right)}$$

$$= 4\sqrt{2}$$

●핵심 공식

▶ 코사인법칙

세 변의 길이를 각각 a, b, c라 하고 b, c 사이의 끼인

Q 문제편 p.004

 $a^2 = b^2 + c^2 - 2bc\cos A$ $\left|\cos A = \frac{b^2 + c^2 - a^2}{2bc}\right|$

▶ 삼각형의 넓이

두 변 b, c와 끼인각 A가 주어졌을 때

 \triangle ABC의 넓이 $S = \frac{1}{2}bc \sin A$

답지 선택률 ① 10% ② 48% ③ 15% ④ 17% ⑤ 10%

정답 ②

| 문제 보기 |

최고차항의 계수가 1 인 삼차함수 f(x) 에 대하여 함수 q(x)를

$$g(x) = \int_0^x f(t)dt + f(x)$$

라 할 때, 함수 g(x)는 다음 조건을 만족시킨다.

- (7) 함수 g(x)는 x=0에서 극댓값 0을
- (나) 함수 g(x)의 도함수 y = g'(x)의 그 래프는 원점에 대하여 대칭이다.

f(2) 의 값은? [4점]

 $\bigcirc 1 - 5 \quad \bigcirc -4 \quad \bigcirc -3 \quad \bigcirc -2 \quad \bigcirc -1$

| 문제 풀이 |

STEP 01

g(x)를 미분하여 g'(x)를 구한 후 $g(0),\,g'(0)$ 을 구하고 이를 이용하여 f(0), f'(0)을 구한다. 미지수를 이용하여 f(x)를 놓고 조건 (나)를 이용하여 f(x)를 구한 다음 f(2)의 값을 구한다.

$$g(x) = \int_0^x f(t) dt + f(x)$$
 에서

g'(x) = f(x) + f'(x).

$$g(0) = \int_{0}^{0} f(t) dt + f(0) = 0 + f(0),$$

g'(0) = f(0) + f'(0)

조건 (가)에 의해

q(0) = f(0) = 0g'(0) = f(0) + f'(0) = 0 + f'(0) = 0이므로

그러므로 x^2 은 f(x)의 인수이다.

 $f(x) = x^2(x-k)$ (단, k는 상수)라 하면 $q'(x) = x^3 - kx^2 + 3x^2 - 2kx$

 $=x^3+(3-k)x^2-2kx$

조건 (나)에 의해 모든 실수 x에 대하여 g'(-x) = -g'(x)가 성립한다.

 $-x^3+(3-k)x^2+2kx=-x^3-(3-k)x^2+2kx$ $2(3-k)x^2 = 0$ 에서 k=3

그러므로 $f(x) = x^2(x-3)$ 따라서 f(2) = -4

다른 풀이

 $f(x) = x^3 + ax^2 + bx + c$ 라고 놓으면

 $f'(x) = 3x^2 + 2ax + b$ 조건 (가)에 의해 f(0) = 0이므로 c = 0.

 $f(x) = x^3 + ax^2$ g'(x) = f(x) + f'(x)

f'(0) = 0이므로 b = 0

 $=x^3+ax^2+3x^2+2ax$

 $=x^3+(a+3)x^2+2ax$ 조건 (나)에 의해

함수 y=g'(x)의 그래프는 원점에 대하여

 x^2 의 계수는 0 이다. 즉, a=-3따라서 $f(x) = x^3 - 3x^2$ 에서

f(2) = 8 - 12 = -4

15 도함수를 이용한 함수의 추론

답지 선택률 ① 9% ② 11% ③ 23% ④ 10% ⑤ 47%

| 문제 보기 |

0 이 아닌 실수 m 에 대하여 두 함수

$$f(x) = 2x^3 - 8x,$$

$$g(x) = \begin{cases} -\frac{47}{m}x + \frac{4}{m^3} & (x < 0) \\ 2mx + \frac{4}{m^3} & (x \ge 0) \end{cases}$$

이 있다. 실수 x 에 대하여 f(x) 와 g(x) 중 크지 않은 값을 h(x) 라 할 때, $\langle 보기 \rangle$ 에서 옳은 것만을 있는 대로 고른 것은? [4점]

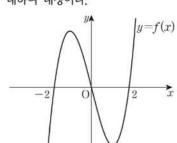
----- 〈보기〉·

ㄱ. m = -1일 때, $h\left(\frac{1}{2}\right) = -5$ 이다.

능하지 않은 x의 개수는 2이다. \mathbf{r} . 함수 h(x) 가 미분가능하지 않은 x의 개수가 1 인 양수 m 의 최댓값은 6 이다.

L. m=-1일 때, 함수 h(x)가 미분가

① ¬ ② 7, L ③ 7, E


4 L, E 5 7, L, E

Ⅰ문제 풀이 Ⅰ

STEP 01

ㄱ. y = f(x)의 그래프를 그린 후 m = -1일 때 $f\left(\frac{1}{2}\right)$ 과 $g\left(\frac{1}{2}\right)$ 의 크기를 비교하여 참 거짓을

그림과 같이 함수 y = f(x) 의 그래프는 원점에 대하여 대칭이다.

ㄱ. m = -1일 때, $f\left(\frac{1}{2}\right) = -\frac{15}{4}$, $g\left(\frac{1}{2}\right) = -5$ $g\left(\frac{1}{2}\right) \le f\left(\frac{1}{2}\right)$ 이므로 $h\left(\frac{1}{2}\right) = g\left(\frac{1}{2}\right) = -5$

STEP 02

 \bot . x의 범위를 나누고 각 범위에서 두 그래프의 위치관계 및 교점의 개수를 파악하여 미분가능하지 않은 점의 개수를 구하여 참 거짓을 판별한다.

ㄴ. m = -1일 때, $g(x) = \begin{cases} 47x - 4 & (x < 0) \\ -2x - 4 & (x \ge 0) \end{cases}$

- (i) x < 0일 때, 함수 y = g(x)의 그래프는 기울기가 양수이고 y 절편이 음수인 직선의 일부이므로 두 함수 y = f(x), y = g(x)의 그래프는 단 하나의 교점을 갖는다. 그 교점의 x 좌표를 $x_1(x_1 < 0)$ 이라 하면 x < 0 에서 함수 h(x) 는 $x = x_1$ 에서만 미분가능하지 않다
- (ii) x=0일 때, g(0)-4<0=f(0)이므로 x=0 에서 함수 h(x) 의 미분가능성은 함수 g(x) 의 미분가능성과 같다. 즉, 함수 h(x)는 x=0 에서 미분가능하지

(iii) x > 0일 때.

$$f(x) - g(x) = 2x^3 - 6x + 4$$
$$= (x - 1)^2(x + 2) \ge 0$$

즉, $f(x) \geq g(x)$

x > 0 에서 h(x) = g(x) 이므로 함수 h(x) 의 미분가능성은 함수 g(x) 의 미분가능성과 같다.

따라서 x > 0 에서 함수 h(x) 는 미분가능하다.

(i), (ii), (iii)에서 함수 h(x)가 미분가능하지 않은 x의 개수는 2이다.

 \Box . 양수 m에 대하여 x의 범위를 나누고 각 범위에서 두 그래프의 위치관계 및 교전의 개수를 파악하여 미분가능하지 않은 점의 개수가 1인 양수 m의 최댓값을 구하여 참 거짓을 판별한다.

 Γ . 양수 m 에 대하여

x=0일 때, $g(0)=\frac{4}{m^3}>0=f(0)$ 이므로

x=0 에서 함수 h(x) 의 미분가능성은 함수 f(x) 의 미분가능성과 같다. 즉. 함수 h(x)는 x=0 에서 미분가능하다. x > 0일 때, 함수 y = q(x)의 그래프는 기울기가 양수이고 y 절편도 양수인 직선의 일부이므로 두 함수 y = f(x), y = g(x) 의 그래프는 단 하나의 교점을 갖는다. 그 교점의 x 좌표를 $x_2(x_2>0)$ 이라 하면 x>0 에서 함수 h(x) 는 $x = x_2$ 에서만 미분가능하지 않다.

그러므로 함수 h(x) 가 미분가능하지 않은 x의 개수가 1이려면 x < 0에서 함수 h(x)는 미분가능해야 한다.

x < 0 에서 두 함수 y = f(x), y = g(x) 의 그래프가 접한다고 할 때.

접점의 x 좌표를 t 라 하자

f(t) = g(t), f'(t) = g'(t) 에서

 $t \times \bigcirc - \bigcirc$ 에서

$$4t^3 = -\frac{4}{m^3}$$

$$\frac{6}{m^2} - 8 = -\frac{47}{m}, 8m^2 - 47m - 6 = 0$$

(8m+1)(m-6)=0

m은 양수이므로 m=6m=6일 때 두 함수 y=f(x), y=g(x)의

그래프는 $x = -\frac{1}{6}$ 인 점에서 접한다. (i) m = 6 일 때, 함수 x < 0 인 모든 실수 x 에

대하여 $g(x) \ge f(x)$ 이므로 h(x) = f(x) 이다. 그러므로 x < 0 에서 함수 h(x)는 미분가능하다.

(ii) 0 < m < 6일 때, x < 0에서 m의 값이 작아질수록 함수 y = g(x) 의 그래프는

일 때보다 기울기의 절댓값이 커지고 y 절편도 커지므로 x < 0 에서 두 함수 y = f(x), y = g(x)의 그래프는

만나지 않는다.

Q 문제편 p.005

[01회] 2020학년도 3월 학력평가 007

그러므로 x < 0인 모든 실수 x에 대하여 $g(x) \ge f(x)$ 이므로 h(x) = f(x) 이다. 따라서 x < 0 에서 함수 h(x) 는 미분가능하다.

(iii) m>6일 때, x<0에서 m의 값이 커질수록 함수 y = g(x)의 그래프는 m=6일 때보다 기울기의 절댓값이

y 절편도 작아지므로 x < 0 에서 두 함수 y = f(x), y = g(x)의 그래프는 서로 다른 두 점에서 만난다. 이때 두 점의 x 좌표를 각각 x_3 , x_4 라고 하면

함수 h(x)는 $x=x_3$, $x=x_4$ 에서 미분가능하지 않다.

(i), (ii), (iii)에서 함수 h(x)가 미분가능하지 않은 x 의 개수가 1 인 양수 m 의 최댓값은 6 이다. \therefore 참 따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

16 자연수의 거듭제곱의 합

| 문제 보기 |

1 $\sum_{k=1}^{5} k^2$ 의 값을 구하시오. [3점]

문제 풀이

STEP 01

∑의 성질을 이용하여 ①의 값을 구한다.

$$\sum_{k=1}^{5} k^2 = \frac{5 \times 6 \times 11}{6} = 55$$

| 문제 보기 |

함수 $f(x) = x^4 + 3x^2 + 9x - 27$ 에 대하여 f'(1)의 값을 구하시오. [3점]

Ⅰ 문제 풀이

STEP 01

f(x)를 미분하여 f'(x)를 구한 후 x=1을 대입하여 f'(1)의 값을 구한다.

 $f'(x) = 4x^3 + 6x + 9$ 이므로 f'(1) = 19

18 NAMED 45

정·답·률 83% | 문제 보기 |

| 문제 풀이 | STEP 01

정적분의 성질을 이용하여 만을 정리한 후 적분하여 값을

$$\int_{1}^{3} (4x^{3} - 6x + 4) dx + \int_{1}^{3} (6x - 1) dx$$
$$= \int_{1}^{3} (4x^{3} + 3) dx$$

$$= \left[x^4 + 3x\right]_1^3$$

$$= (81 + 9) - (1 + 3) = 80$$

=(81+9)-(1+3)=86

19 _{Z그의 성질}

| 문제 보기 |

- ① $10 \le x < 1000$ 인 실수 x 에 대하여
- $\log x^3 \log \frac{1}{x^2}$ 의 값이 자연수가 되도록
- 하는 모든 x 의 개수를 구하시오. [3점]

│문제 풀이│

STEP 01

정답 55

로그의 성질을 이용하여 ②를 정리한 후 ①에서 ②의 범위를 구하여 값이 자연수가 되도록 하는 x 의 개수를 구한다.

$$\log x^3 - \log \frac{1}{x^2} = 3\log x - (-2\log x) = 5\log x$$

 $1 \le \log x < 3$, $5 \le 5\log x < 15$

따라서 $5\log x$ 의 값이 자연수가 되도록 하는 x 의

 $5\log x$ 의 값이 자연수가 되도록 하는 x 의 값을 구하면 x = 10, $10^{\frac{6}{5}}$, $10^{\frac{7}{5}}$, $10^{\frac{8}{5}}$, ..., $10^{\frac{14}{5}}$

★ BEST 모탑 분석 ★

▶ 문제 해결 방법

먼저 $\log x^3 - \log \frac{1}{x^2}$ 를 정리하면 $5\log x$ 이고

 $10 \le x < 1000$ 에서 $5 \le 5\log x < 15$ 이므로 범위를 만족하는 $5\log x$ 는 $5, 6, 7, \cdots, 14$ 이다. $5\log x = 5$ 일 때 $\log x = 1$, x = 10

$$5\log x = 6$$
일 때 $\log x = \frac{6}{5}$, $x = 10^{\frac{6}{5}}$

같은 방법으로 모든 $5\log x$ 에 대하여 x값이 1개씩 존재하므로 만족하는 x의 개수는

 $5\log x$ 값이 자연수라 했지 x가 자연수라는 조건은 있지 않으므로 혼동해서는 안 된다.

정답 40 정·답·률 40%

정답 86

| 문제 보기 |

 $0 < a < \frac{4}{7}$ 인 실수 a 와 유리수 b 에 대하여

닫힌구간 $\left[-\frac{\pi}{a}, \frac{2\pi}{a}\right]$ 에서 정의된 함수 $f(x) = 2\sin(ax) + b$ 가 있다.

함수 $\mathbf{1}$ y = f(x) 의 그래프가 두 점

 $A\left(-\frac{\pi}{2},0\right)$, $B\left(\frac{7}{2}\pi,0\right)$ 을 지날 때

30(a+b) 의 값을 구하시오. [4점]

| 문제 풀이 |

이용하여 연립방정식을 세운 후 삼각함수의 그래프의 대칭성을 이용하여 a의 값을 구한다.

닫힌구간
$$\left[-\frac{\pi}{a},\,\frac{2\pi}{a}\right]$$
 에서 $0 < a < \frac{4}{7}$ 이므로 $-\frac{\pi}{a} < -\frac{7}{4}\pi$, $\frac{7\pi}{2} < \frac{2\pi}{a}$ 이다.

함수 $f(x) = 2\sin(ax) + b$ 의 그래프가 두 점

$$A\left(-\frac{\pi}{2},0\right)$$
, $B\left(\frac{7}{2}\pi,0\right)$ 을 지나므로

$$f\left(-\frac{\pi}{2}\right) = 2\sin\left(-\frac{a}{2}\pi\right) + b = -2\sin\left(\frac{a}{2}\pi\right) + b = 0$$
$$f\left(\frac{7}{2}\pi\right) = 2\sin\left(\frac{7a}{2}\pi\right) + b = 0$$

따라서
$$\sin\left(\frac{7a}{2}\pi\right) = -\sin\left(\frac{a}{2}\pi\right)$$

$$0 < a < \frac{4}{7}$$
 에서

$$0<rac{a}{2}\pi<rac{2}{7}\pi,\ 0<rac{7a}{2}\pi<2\pi$$
이므로
$$rac{7a}{2}\pi=2\pi-rac{a}{2}\pi$$
 또는 $rac{7a}{2}\pi=\pi+rac{a}{2}\pi$

따라서
$$a = \frac{1}{2}$$
 또는 $a = \frac{1}{3}$

각 a의 값에 대하여 만족하는 b를 구한 후 주어진 조건을 만족하는 b를 구한 다음 30(a+b) 의 값을 구한다.

(i)
$$a = \frac{1}{2}$$
일 때

$$f(x) = 2\sin\left(\frac{1}{2}x\right) + b \text{ old } A$$

$$f\left(-\frac{\pi}{2}\right) = 2\sin\left(-\frac{\pi}{4}\right) + b$$

$$= 2 \times \left(-\frac{\sqrt{2}}{2}\right) + b$$

이므로 $b = \sqrt{2}$ 에서 b는 유리수라는 조건을 만족시키지 않는다.

(ii) $a = \frac{1}{3}$ 일 때

$$f(x) = 2\sin\left(\frac{1}{3}x\right) + b \text{ old}$$

$$f\left(-\frac{\pi}{2}\right) = 2\sin\left(-\frac{\pi}{6}\right) + b = 2 \times \left(-\frac{1}{2}\right) + b$$

$$= -1 + b = 0$$

이때
$$f\left(\frac{7}{2}\pi\right) = 0$$
 이다.

(i), (ii)에서 $a = \frac{1}{3}$, b = 1이고

 $30(a+b) = 30 \times \left(\frac{1}{3} + 1\right) = 40$

★ BEST 모답 분석 ★

▶ 문제 해결 방법

 $f(x) = 2\sin(ax) + b$ 의 그래프가 두 점 $A\left(-\frac{\pi}{2}, 0\right)$, $\mathrm{B}\!\left(\!\frac{7}{2}\pi,\,0\!\right)$ 을 지나므로 두 점의 좌표를 f(x)에 대입하

여 연립하면 $\sin\left(\frac{7a}{2}\pi\right) = -\sin\left(\frac{a}{2}\pi\right)$ 이다. $y = \sin x$ 의

그래프를 그려 대칭성을 따져주면 $\frac{7a}{2}\pi$ 와 $\frac{a}{2}\pi$ 의 관계

 $g(x) = \sin\!x$ 라 하고 $g(\alpha) + g(\beta) = 0$ $(\alpha < \beta)$ 이라 하 면 그래프에서 $\alpha + \beta = 2\pi$ 또는 $\beta - \alpha = \pi$ 임을 알 수 있다. 그러므로 $\frac{a}{2}\pi+\frac{7a}{2}\pi=2\pi$ 또는 $\frac{7a}{2}\pi-\frac{a}{2}\pi=\pi$ 여기서 a를 구하고 각 a값에 대하여 다시 f(x)에 두 점 A, B의 좌표를 대입하면 $a=\frac{1}{3}$ 일 때 b=1이다. 삼각함수의 그래프의 특징을 잘 알고 있어야 한다.

21 _{+999 규칙성과 합}

│ 문제 보기 │

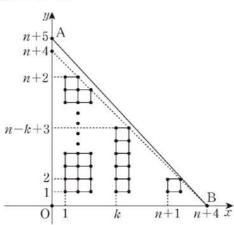
자연수 n에 대하여 두 점 A(0, n+5), B(n+4,0) 과 원점 O 를 꼭짓점으로 하는 삼각형 AOB 가 있다. 삼각형 AOB 의 내부에 포함된 정사각형 중 한 변의 길이가 1 이고 꼭짓점의 x 좌표와 y 좌표가 모두 자연수인

정사각형의 개수를 a_n 이라 하자. $\sum_{n=1}^{\infty} a_n$ 의 값을

Ⅰ문제 풀이 Ⅰ

STEP 01

꼭짓점의 x 좌표와 y 좌표가 모두 자연수인 정사각형의 각 꼭짓점의 좌표를 미지수를 이용하여 놓고 x좌표가 1일 때부터 정사각형의 개수를 구하여 규칙을 찾아 a_n 을 구한다.


$$y = -\frac{n+5}{n+4}x + n + 5$$

$$y = -\frac{n+5}{n+4}a + n + 5$$
$$= n+5 - \left(1 + \frac{1}{n+4}\right)a$$

$$=n+5-a-\frac{a}{n+4}$$

0 < a < n+4일 때, $0 < \frac{a}{n+4} < 1$ 이므로

x=a일 때, y 좌표가 자연수인 점의 개수는 n+4-a이다.

두 자연수 a, b에 대하여 삼각형 AOB의 내부에 포함되는 한 변의 길이가 1이고 각 꼭짓점의 좌표가 자연수인 정사각형의 네 꼭짓점의 좌표를 각각 (a, b), (a+1, b), (a+1, b+1), (a, b+1)

a=1일 때, $1 \le b \le n+1$ 이므로 정사각형의

a=2일 때, $1 \le b \le n$ 이므로 정사각형의 개수는

a=3일 때, $1 \le b \le n-1$ 이므로 정사각형의 개수는 (n-1) 이다.

a=n+1일 때, b=1이므로 정사각형의 개수는

$a_n = (n+1) + n + (n-1) + \cdots + 1$

 \sum 의 성질을 이용하여 $\sum_{n=1}^8 a_n$ 의 값을 구한다.

$$\begin{split} \sum_{n=1}^{8} a_n &= \frac{1}{2} \sum_{n=1}^{8} (n^2 + 3n + 2) \\ &= \frac{1}{2} \left(\frac{8 \times 9 \times 17}{6} + 3 \times \frac{8 \times 9}{2} + 2 \times 8 \right) \\ &= 164 \end{split}$$

●핵심 공식

▶ 자연수의 거듭제곱의 합

•
$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• $\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

★ BEST 모답 분석 ★

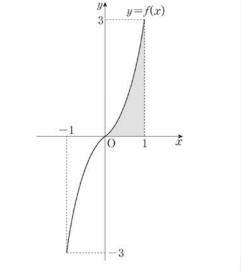
점 A'(0, n+4)라 하면 삼각형 AOB의 내부에 포함된

직사각형의 왼쪽 아래쪽 꼭짓점을 기준으로 x좌표가 1일 때 직사각형은 y좌표가 1부터 n+1까지이므로 개수

개수는 1씩 감소한다. 그러므로 $a_n = \sum_{i=1}^n k$ 이다. 개수의 규칙만 잘 찾으면 합을 구하는 과정은 공식을 정

확하게 알고 있다면 큰 어려움 없이 구할 수 있다.

22 평행이동을 이용한 정적분의 값 정답 41

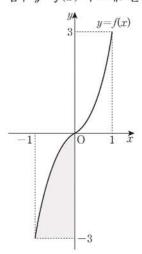

정·답·률 17%

f(x) 는 정의역에서 증가하고 모든 실수 x 에 g(x)가 다음 조건을 만족시킨다.

(가) 닫힌구간 [-1, 1] 에서 g(x) = f(x)

y = g(x)의 그래프는 함수 y = f(x)의 그래프를 x 축의 방향으로 2n 만큼, y축의 방향으로 6n 만큼 평행이동한 그래프이다. (단, n은 자연수이다.)

$$f(1) = 3$$
이고 $\int_{0}^{1} f(x)dx = 1$ 일 때,

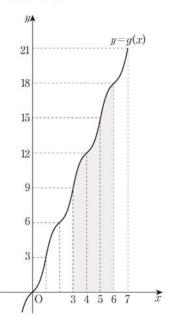

| 문제 풀이 |

STEP 01

주어진 조건을 이용하여 y=f(x)의 그래프를 그린 후 넓이를 알 수 있는 영역의 넓이를 구한다.

문제에서
$$\int_0^1 f(x)dx = 1$$
 이고,

함수 y = f(x) 의 그래프는 원점에 대하여 대칭이다.


그러므로 그림에서 색칠된 영역의 넓이는 3-1=2

[3,6] 의 영역을 나누고 조건 (나)에 의해 평행이동을 이용하여 y=g(x) 의 그래프를 그려 각각의 영역에서 넓이를 구한다.

닫힌구간 [3,6] 에서

$$\int_{3}^{6} g(x) \, dx = \int_{3}^{6} |g(x)| \, dx = \frac{1}{6}$$

곡선 y=g(x)와 x축 및 두 직선 x=3, x=6으로 둘러싸인 도형의 넓이이므로 함수 y = g(x)의 그래프와 구하는 영역을 그림으로 나타내면 다음과 같다.

Q 문제편 p.006

[01회] 2020학년도 3월 학력평가 009

 $= \frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2+3n+2)$

$$\sum_{n=1}^{8} a_n = \frac{1}{2} \sum_{n=1}^{8} (n^2 + 3n + 2)$$

$$= \frac{1}{2} \left(\frac{8 \times 9 \times 17}{6} + 3 \times \frac{8 \times 9}{2} + 2 \times 8 \right)$$

$$= 164$$

$$\sum_{k=1}^{n} k = 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

$$\bullet \sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\bullet \sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

정사각형 중 한 변의 길이가 1이고 꼭짓점의 x 좌표와 y 좌표가 모두 자연수인 정사각형의 개수와 직각이등변 삼각형 A'OB의 내부에 포함된 정사각형 중 한 변의 길이가 1이고 꼭짓점의 x 좌표와 y 좌표가 모두 자연수 인 정사각형의 개수는 같다. 그러므로 직각이등변삼각형 A'OB의 내부에 포함된 정사각형의 개수를 세는 것이

문제 보기

닫힌구간 [-1,1] 에서 정의된 연속함수 대하여 f(-x) = -f(x) 가 성립할 때, 함수

(나) 닫힌구간 [2n-1, 2n+1] 에서 함수

$$\int_{a}^{6} g(x)dx$$
 의 값을 구하시오. [4점]

Q 문제편 p.008

닫힌구간 [3, 5] 에서

함수 y = g(x)의 그래프는

함수 y = f(x)의 그래프를

x 축의 방향으로 4 만큼 평행이동하고

y 축의 방향으로 12 만큼 평행이동한 그래프이므로

$$\int_{2}^{5} g(x) dx = 2 \times 12 = 24$$

닫힌구간 [5, 7] 에서

함수 y = g(x)의 그래프는

함수 y = f(x) 의 그래프를

x 축의 방향으로 6 만큼 평행이동하고

y 축의 방향으로 18 만큼 평행이동한 그래프이므로

$$\int_{5}^{6} g(x) \, dx = 15 \times 1 + 2 = 17$$

$$\int_{3}^{6} g(x) dx = \int_{3}^{5} g(x) dx + \int_{5}^{6} g(x) dx = 41$$

★ BEST 모답 분석 ★

문제에서 주어진 그래프에서 색칠된 영역의 넓이는 1이 고 직사각형에서 색칠된 영역을 제외한 부분의 넓이는

조건 (나)를 이용하여 그래프를 평행이동하고 이 넓이를 이용하면 답을 구할 수 있다.

n=1이면 [1, 3]에서 y=f(x)의 그래프를 x축의 방 향으로 2만큼, y축의 방향으로 6만큼 평행이동한 그래 프가 y=q(x)이므로

그래프를 평행이동하면 (-1, -3)이 (1, 3)으로, (1, 3)이 (3, 9)로 이동하게 된다. n=2일 때도 같은 방법으로 이동해도 되나 n=1일 때 이동한 그래프를 같은 이동으로 한번 더 이동한다고 생각하면 된다. 그러면 이동한 그래프의 아랫부분은 직사각형이므로 직 사각형의 넓이를 구하면 되고 이동한 그래프는 앞에서 구한 영역들의 넓이를 이용하여 구하면 된다. 평행이동 을 잘 이용하면 어려움 없이 답을 구할 수 있다.

확률과 통계

정답 ⑤

답지 선택률 ① 4% ② 5% ③ 3% ④ 5% ⑤ 83%

│ 문제 보기 │

 $\mathbf{0}_{3}$ $\mathbf{H}_{n} = 21$ 일 때, 자연수 n 의 값은? [2점]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

│문제 풀이│ STEP 01

중복조합으로 ①을 계산하여 n의 값을 구한다.

$$_{3}H_{n} = {}_{n+2}C_{n} = {}_{n+2}C_{2}$$

$$= \frac{(n+2)(n+1)}{2}$$

=21이므로

(n+2)(n+1) = 42

 $n^2 + 3n - 40 = 0$

(n-5)(n+8)=0

n 이 자연수이므로

n = 5

│ 문제 보기 │

숫자 0, 1, 2, 3 중에서 중복을 허락하여 네 개를 선택한 후, 일렬로 나열하여 만든 네 자리 자연수가 2100 보다 작은 경우의 수는? [3점]

답지 선택률 ① 84% ② 5% ③ 5% ④ 4% ⑤ 2%

1) 80 3 90 (2) 85 4 95 (5) 100

| 문제 풀이 |

STEP 01

천의 자리의 수를 기준으로 경우를 나눈다.

천의 자리의 수가 1 인 네 자리 자연수의 개수는 $_{4}\Pi_{3} = 4^{3} = 64$

천의 자리의 수가 2이고 백의 자리의 수가 0인 네 자리 자연수의 개수는

 $_{4}\Pi_{2} = 4^{2} = 16$

따라서 구하는 경우의 수는 64 + 16 = 80

같은 것이 있는 순열

답지 선택률 ① 38% ② 7% ③ 12% ④ 7% ⑤ 36%

Ⅰ 문제 보기 Ⅰ

어느 행사장에는 현수막을 1개씩 설치할 수 있는 장소가 5곳이 있다. 현수막은 A, B, C 세 종류가 있고, A는 1개, B는 4개, C는 2개가 있다. 다음 조건을 만족시키도록 현수막 5개를 택하여 5곳에 설치할 때, 그 결과로 나타날 수 있는 경우의 수는? (단, 같은 종류의 현수막끼리는 구분하지 않는다.) [3점]

(가) A는 반드시 설치한다. (나) B는 2곳 이상 설치한다.

2 65

① 55 (5) 95

4 85

| 문제 풀이 |

조건 (나)에서 B가 설치되는 장소의 수를 기준으로 경우를 나누고 같은 것이 있는 순열을 이용하여 경우의 수를 구한다.

3 75

조건 (가)에서 현수막 A는 반드시 설치돼야 하고, 조건 (나)에서 현수막 B는 2곳 이상 설치돼야

B가 2곳, 3곳, 4곳에 설치되는 경우로 나누어 경우의 수를 구한다.

(i) A 1곳, B 2곳, C 2곳에 설치하는 경우

(ii) A 1곳 B 3곳, C 1곳에 설치하는 경우 $\frac{5!}{3!} = 20$

(iii) A 1곳, B 4곳에 설치하는 경우

따라서 (i), (ii), (iii)에 의하여 구하고자 하는 경우의 수는 30+20+5=55

26 SHZE

답지 선택률 ① 7% ② 73% ③ 8% ④ 8% ⑤ 4%

정답 ①

고구마피자, 새우피자, 불고기피자 중에서 m 개를 주문하는 경우의 수가 36일 때,

1 고구마피자, 새우피자, 불고기피자를 적어도 하나씩 포함하여 m 개를 주문하는 경우의 수는?

① 12 ② 15 ③ 18 ④ 21 ⑤ 24

| 문제 풀이 |

STEP 01

중복조합을 이용하여 m 값을 구한다.

세 가지 피자 중에서 m개를 주문하는 경우의 수는 $_{3}H_{m} = _{3+m-1}C_{m} = _{m+2}C_{m} = _{m+2}C_{2}$ (m+2)(m+1)

즉, (m+2)(m+1) = 72

 $m^2 + 3m - 70 = 0$

(m+10)(m-7)=0m = 7 (∵ m은 자연수)

STEP 02

정답 ①

중복조합을 이용하여 🕕의 조건을 만족시키는 경우의 수를 구한다.

세 가지 피자를 적어도 하나씩 포함하여 7개를 주문하는 경우의 수는 피자마다 한 개씩 주문하고, 나머지 4개를 고르는 방법으로 구하면 된다. 따라서 구하는 경우의 수는 3H4이다.

$$_{3}H_{4} = _{6}C_{4} = _{6}C_{2} = \frac{6 \times 5}{2 \times 1} = 15$$

서로 다른 n개에서 중복을 허락하여 r개를 택하는 조 합을 중복조합이라 하고, 이 중복조합의 수를 기호로

 $_{n}H_{r} = _{n+r-1}C_{n-1} = _{n+r-1}C_{r}$

27 같은 것이 있는 순열

답지 선택률 ① 3% ② 4% ③ 7% ④ 7% ⑤ 79%

Ⅰ 문제 보기 Ⅰ

흰 공 2 개, 빨간 공 2 개, 검은 공 4 개를 일렬로 나열할 때, ① 흰 공은 서로 이웃하지 않게 나열하는 경우의 수는? (단, 같은 색의 공끼리는 서로 구별하지 않는다.) [3점]

① 295 ② 300 ③ 305 ④ 310 ⑤ 315

| 문제 풀이 |

STEP 01

여사건을 이용하여 경우의 수를 구한다.

흰 공 2개, 빨간 공 2개, 검은 공 4개를 일렬로

나열하는 경우의 수는 $\frac{8!}{2! \times 2! \times 4!} = 420$ 흰 공 2 개를 하나로 보고 7 개의 공을 일렬로

나열하는 경우의 수는 $\frac{7!}{2! \times 4!} = 105$

따라서 구하는 경우의 수는 420-105=315

답지 선택률 ① 6% ② 66% ③ 7% ④ 15% ⑤ 6%

정답 ②

다음은 4 이상의 자연수 n 에 대하여 등식

 $a \times b \times c \times d = 2^n \times 3^n$

을 만족시키는 2 이상의 자연수 a, b, c, d의 순서쌍 (a, b, c, d) 중에서 a+b+c+d가 짝수가 되도록 하는 모든 순서쌍의 개수를 구하는 과정이다.

 $a = 2^{x_1} \times 3^{y_1}$, $b = 2^{x_2} \times 3^{y_2}$, $c = 2^{x_3} \times 3^{y_3}$, $d = 2^{x_4} \times 3^{y_4}$ 이라 하면 $x_1 + x_2 + x_3 + x_4 = n$,

 $y_1 + y_2 + y_3 + y_4 = n$

(단, i=1, 2, 3, 4에 대하여 x_i, y_i 는

이다. 이때 a+b+c+d가 짝수이므로 a, b, c, d가 모두 짝수이거나 a, b, c, d 중 에서 2개만 짝수이다.

(i) a, b, c, d가 모두 짝수인 경우 x_1, x_2, x_3, x_4 가 모두 자연수이고 y_1, y_2, y_3, y_4 는 음이 아닌 정수이므 로 순서쌍

> 의 개수는 $_{4}$ H $_{(7)}$ \times_{4} H $_{n}$ \cdots

 $(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$

(ii) a, b, c, d 중에서 2개만 짝수인 경우 $x_1,\; x_2,\; x_3,\; x_4$ 중에서 자연수가 2 개이고 0 이 2 개이므로 순서쌍

> (x_1, x_2, x_3, x_4) 의 개수는 ₄C₂× (나) 이다. 이때 a, b, c, d 중 홀수인 두 수는 1이 될 수 없으 므로 순서쌍 (y_1, y_2, y_3, y_4) 의

따라서 순서쌍 $(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$

개수는 4H (다) 이다.

의 개수는 4C2× (나) ×4H (다)

(i), (ii)에 의하여 구하는 경우의 수는 ①+ⓒ이다.

위의 (7), (4), (7)에 알맞은 식을 각각 (7), g(n), h(n)이라 할 때, f(6)+g(7)+h(8)의 값은? [4점]

① 13 ② 14 ③ 15 ④ 16 ⑤ 17

| 문제 풀이 |

STEP 01

문제의 흐름에 맞도록 중복조합을 이용하여 빈칸에 알맞은 식을 구한다.

 $a = 2^{x_1} \times 3^{y_1}$, $b = 2^{x_2} \times 3^{y_2}$, $c = 2^{x_3} \times 3^{y_3}$, $d = 2^{x_4} \times 3^{y_4}$ 이라 하면

 $x_1 + x_2 + x_3 + x_4 = n$, $y_1 + y_2 + y_3 + y_4 = n$ (단, i=1, 2, 3, 4에 대하여 x_i, y_i 는 음이 아닌 정수)이다. 이때 a+b+c+d가 짝수이므로 a, b, c, d가 모두 짝수이거나 a, b, c, d 중에서 2 개만 짝수이다.

(i) a, b, c, d가 모두 짝수인 경우

 x_1, x_2, x_3, x_4 가 모두 자연수이고 $y_1, \ y_2, \ y_3, \ y_4$ 는 음이 아닌 정수이므로 순서쌍 $(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$ 의

 $_4\mathrm{H}$ $_{n-4}$ $\times _4\mathrm{H}_n$

(ii) a, b, c, d 중에서 2개만 짝수인 경우 x_1, x_2, x_3, x_4 중에서 자연수가 2 개이고 0 이 2 개이므로 순서쌍 (x_1, x_2, x_3, x_4) 의 개수는

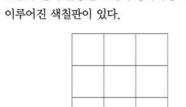
이다. 이때 a, b, c, d 중 홀수인 두 수는 1이 될 수 없으므로 순서쌍 $(y_1,\ y_2,\ y_3,\ y_4)$ 의 개수는

이다. 따라서 순서쌍

 $_4$ C $_2$ \times $_2$ H $_{n-2}$

 $\left(x_{1},\;x_{2},\;x_{3},\;x_{4},\;y_{1},\;y_{2},\;y_{3},\;y_{4}\right)$ 의 개수는

 $_4C_2 \times _2H_{n-2} \times _4H_{n-2} \cdots \odot$


(i), (ii)에 의하여 구하는 경우의 수는 ①+ⓒ이다. 따라서

f(n) = n-4, $g(n) = {}_{2}H_{n-2}$, h(n) = n-2f(6) = 6 - 4 = 2

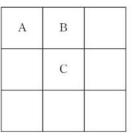
 $g(7) = {}_{2}H_{5} = {}_{6}C_{1} = 6$ h(8)=8-2=6이므로

f(6)+g(7)+h(8)=2+6+6=14 이다.

정답 8 정·답·률 48% l 문제 보기 l 그림과 같이 합동인 9개의 정사각형으로

빨간색과 파란색을 포함하여 총 9 가지의 서로 다른 색으로 이 색칠판을 다음 조건을 만족시키도록 칠하려고 한다.

- (가) 주어진 9가지의 색을 모두 사용 하여 칠한다.
- (나) 한 정사각형에는 한 가지 색만을 칠하다
- (다) 빨간색과 파란색이 칠해진 두 정사각형은 꼭짓점을 공유하지 않


색칠판을 칠하는 경우의 수는 $k \times 7!$ 이다. k 의 값을 구하시오. (단. 회전하여 일치하는 것은 같은 것으로 본다.) [4점]

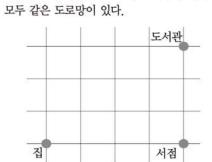
| 문제 풀이 |

STEP 01

빨간색을 칠할 곳을 기준으로 경우를 나누고 파란색을 칠하여 경우의 수를 구한다.

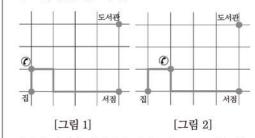
회전하여 일치하는 것을 같은 것으로 보므로 빨간색을 칠할 정사각형은 그림과 같이 A, B, C 중에서 택할 수 있다.

- (i) A 에 빨간색을 칠하는 경우 파란색을 칠할 수 있는 경우의 수는 5이다. 나머지 7개의 정사각형에 남은 7개의 색을 칠하는 경우의 수는 7!이다.
- (ii) B 에 빨간색을 칠하는 경우 파란색을 칠할 수 있는 경우의 수는 3이다. 나머지 7개의 정사각형에 남은 7개의 색을 칠하는 경우의 수는 7!이다
- (iii) C 에 빨간색을 칠하는 경우 파란색을 어떤 정사각형에 칠해도 빨간색이 칠해진 정사각형과 꼭짓점을 공유하므로 조건을 만족시킬 수 없다.


(i), (ii), (iii)에서 구하는 경우의 수는

 $(3+5)\times 7! = 8\times 7!$

따라서 k=8


| 문제 보기 |

그림과 같이 이웃한 두 교차로 사이의 거리가

철수가 집에서 도로를 따라 최단거리로 약속장소인 도서관으로 가다가 어떤 교차로에서 약속장소가 서점으로 바뀌었다는 연락을 받고 곧바로 도로를 따라 최단거리로 서점으로 갔다. 집에서 서점까지 지나 온 길이 같은 경우 하나의 경로로 가주하다

예를 들어, [그림1]과 [그림2]는 연락받은 위치는 다르나, 같은 경로이다.

철수가 집에서 서점까지 갈 수 있는 모든 경로의 수를 구하시오. (단, 철수가 도서관에 도착한 후에 서점으로 가는 경우도 포함한다.) [4점]

| 문제 풀이 |

STEP 01

도로망의 가로축을 기준으로 경우를 나누고 같은 것이 있는 순열을 이용하여 경우의 수를 구한다.

①10 수능기출 25회 모의고사 수학영역 [리얼 오리지널]

Q 문제편 p.009

Q 문제편 p.011

[01회] 2020학년도 3월 학력평가 011

463时 BEST SELLER (2006~2020 누적 판매 1위) REAL ORIGINAL

2022 REAL ORIGINAL

수험생의 마음을 담다!

수험생의 의견을 반영해 구성과 해설까지 더욱 새롭고 강력한 교재로 **업그레이드** 했습니다.

ALL NEW

Questions & Answers [BEST 6]

price [가격]

- Q 수험생 부담을 낮춘 착한 가격이면 좋겠어요.
- ▲ 해설부터 교재의 크기까지 업그레이드하면서 제작비는 늘어났지만, 가격을 대부분 동결해 수험생 부담은 NO!

Size [37]

- Q 조금 불편해도 모의고사는 시험지 크기가 좋아요.
- ▲ 실제 시험지와 똑같은 8절 크기의 교재로 만들어 실전과 동일한 느낌으로 문제를 풀어 볼 수 있도록 했습니다.

explanation [해설]

- Q 해설편에 문제까지 들어있으면 편리할 것 같아요.
- ▲ 해설편과 문제편을 동시에 펼쳐 학습하지 않아도 OK! 전학년, 전과목 해설편에 문제와 보기를 수록했습니다.

choice [선택]

- Q 선택 과목도 2022학년도 수능 체제에 맞춰 주세요.
- ▲ 국어, 수학 모두 신수능을 반영하여 선택 과목을 재구성 하였으며, 국어 매체 문제는 신출제 후 재구성했습니다.

example [MA]

- Q 2022 수능 예시 문항도 수록해 주세요.
- ▲ 전학년 국어, 수학 교재에 수능 예시 문항을 수록하여 신수능 출제 유형을 정확히 파악할 수 있도록 했습니다.

paper [80]

- 문제를 풀 때 뒷면의 글씨가 안 보이면 좋겠어요.
- ▲ 최상급 종이를 사용해 뒷면의 글씨 비침이 없어 눈도 피곤하지 않고, 종이가 울거나 잘 찢어지지 않습니다.

〈문제편〉과〈정답과 해설편〉 분리 방법

2권을 감싼 겉표지를 뜯어내고 사용하십시오. 〈문제편〉과 〈해설편〉이 분리되는 것은 파본이 아닙니다.
① 〈문제편〉과 〈해설편〉을 펼친 후, ② 좌우로 당기면 겉표지에서 〈문제편〉과 〈해설편〉이 쉽게 분리됩니다.

[2022학년도 수능 체제 반영] 수학영역은 2022 신수능 형식에 맞춰 공통 과목(수학 I, 수학 II)+선택 과목(확률과 통계, 미적분, 기하)으로 재구성하였습니다.

ISBN 978-89-6898-229 정가 **18,800**원 리얼 오리지널 수능기출 25회 모의고사 수학영역

발행처 수능 모의고사 전문 출판 입시플라이 발행일 2021년 2월 17일(제 1쇄) 등록번호 제 2017-22호 홈페이지 www.ipsifly.com 대표전화 1566-9939 구입문의 02-433-9975 내용문의 02-433-9979 팩스 02-433-9905

※ 이 책에 실린 모든 내용과 편집 형태에 대한 저작권은 입시플라이에 있습니다. 무단으로 복사 • 복제를 일절 금합니다.

※ 페이지가 누락되었거나 파손된 교재는 구입하신 곳에서 교환해 드립니다. ※ 발간 이후 발견되는 오류는 홈페이지 정오표를 통해서 알려드립니다.

발행인 조용규 편집책임 양창열 김유 이혜민 이주명 물류관리 김소희 이혜리 주소 서울특별시 중랑구 용마산로 615 정민빌딩 3층